
 

SoundMexPro documentation, Software Version 3.0.1.0, April 14, 2024  1 
 

SoundMexPro
 

for sound applications in MATLAB® 
GNU Octave and Python 

 

Version 3.0.1.0 

 
ASIO Sound-Toolkit for MATLAB®, GNU Octave and Python 

on Microsoft Windows® 
www.soundmexpro.de 

 
 

User Manual 
 
 
 
 
 
 
 
 
 
 

Copyright Dr. Daniel Berg, Carl von Ossietzky University Oldenburg 
No warranty, subject to alteration 

  



 

SoundMexPro documentation   2 

 
 

Content 

1 License .............................................................................................................................................. 4 
2 Introduction ..................................................................................................................................... 4 

2.1 What’s new? ............................................................................................................................. 5 
2.1.1 Changes form version 2.x to version 3.x............................................................................ 5 

2.1.2 Changes form version 1.x to version 2.x............................................................................ 5 

3 Getting started ................................................................................................................................. 6 
3.1 System Requirements ............................................................................................................... 6 
3.2 Installing SoundMexPro ............................................................................................................ 6 

3.2.1 Setting up SoundMexPro for MATLAB®, GNU Octave and Python ................................... 8 

3.2.2 Compiling MEX files GNU Octave ...................................................................................... 8 

3.2.3 SoundMexPro on MATLAB® 7.1 or below ......................................................................... 8 

3.2.4 Accessing SoundMexPro help from MATLAB® .................................................................. 9 

3.3 Licensing SoundMexPro ............................................................................................................ 9 
3.4 Uninstalling SoundMexPro ....................................................................................................... 9 

4 The SoundMexPro Interface .......................................................................................................... 10 
4.1 General Command Description (MATLAB/Octave)................................................................. 10 
4.2 General Command Description (Python) ................................................................................ 11 
4.3 Architecture: Output Channels and Virtual Tracks ................................................................. 12 
4.4 Audio data in SoundMexPro: files and vectors/arrays ........................................................... 17 

4.4.1 Loops, ramps and crossfades ........................................................................................... 17 

4.4.2 Channel ‘alignment’ ......................................................................................................... 18 

4.5 Buffer configuration ................................................................................................................ 20 
4.5.1 Sound card constraints: minimum delay ......................................................................... 21 

4.6 Supported audio file formats .................................................................................................. 22 
5 Error Handling in SoundMexPro .................................................................................................... 22 

5.1 Synchronous errors in SoundMexPro ..................................................................................... 22 
5.2 Asynchronous errors in SoundMexPro ................................................................................... 22 

5.2.1 Clipping ............................................................................................................................ 22 

5.2.2 Xruns ................................................................................................................................ 23 

5.2.3 Data underrun ................................................................................................................. 23 

5.2.4 Setting changed ............................................................................................................... 23 

5.2.5 Fatal errors ...................................................................................................................... 23 

6 Tutorial, Examples and Scenarios .................................................................................................. 23 
6.1 The SoundMexPro Tutorial ..................................................................................................... 23 
6.2 The SoundMexPro Examples .................................................................................................. 25 
6.3 Using SoundMexPro without MATLAB®, GNU Octave or Python ........................................... 27 

6.3.1 Using the SoundDllProLoader .......................................................................................... 27 

6.3.2 Programming Interface (API) ........................................................................................... 27 



 

SoundMexPro documentation   3 

7 SoundMexPro GUI interfaces ......................................................................................................... 27 
7.1 The SoundMexPro ‘Mixer’ ...................................................................................................... 27 
7.2 The SoundMexPro ‘TrackView’ ............................................................................................... 28 

8 SoundMexPro Realtime DSP-Plugins ............................................................................................. 30 
8.1 Realtime processing with MATLAB® or GNU Octave scripts .................................................. 30 

8.1.1 Using compiled script plugins .......................................................................................... 32 

8.2 Realtime processing with VST-plugins .................................................................................... 32 
8.2.1 I/O-configuration of VST-plugins ..................................................................................... 32 

8.2.2 VST-plugin configuration files .......................................................................................... 37 

8.2.3 VST-plugin editor ............................................................................................................. 38 

9 ASIO Direct Monitoring (ADM)....................................................................................................... 38 
9.1 Extensions/hints for particular sound cards ........................................................................... 39 

9.1.1 Mapping inputs to multiple outputs................................................................................ 39 

9.1.2 Output gain/pan control .................................................................................................. 39 

9.1.3 ADM mixer feedback ....................................................................................................... 39 

10 MIDI ............................................................................................................................................ 39 
11 File-to-file operation with SoundMexPro ................................................................................... 40 
12 SoundMexPro Versions .............................................................................................................. 40 
13 SoundMexPro Command Reference .......................................................................................... 41 

13.1 General Commands ............................................................................................................. 41 
13.2 Device Commands ............................................................................................................... 46 
13.3 Playback Commands ........................................................................................................... 47 
13.4 Recording Commands ......................................................................................................... 56 
13.5 MATLAB® script DSP commands ......................................................................................... 60 

13.5.1 VST Commands ................................................................................................................ 60 

13.6 MIDI Commands .................................................................................................................. 63 
13.7 Other Commands ................................................................................................................ 64 
13.8 Error Handling ..................................................................................................................... 65 

14 FAQ ............................................................................................................................................. 66 
15 Version History ........................................................................................................................... 66 
 



 

SoundMexPro documentation   4 

1 License 
SoundMexPro and all it’s parts, plugins, tools are published under the GNU General Public License 
(GPL). You should have received a copy of the GNU General Public License along with this program in 
the file COPYING in the installation directory. It is available from the GNU webpage as well, see 
www.gnu.org. Information how to obtain the source code of SoundMexPro can be found on the 
SoundMexPro homepage. 

 

 

 

 
SoundMexPro uses the ASIO technology. 
ASIO is a trademark and software of Steinberg Media Technologies GmbH. 

 

SoundMexPro uses the VST technology. 
VST is a trademark and software of Steinberg Media Technologies GmbH. 

 
SoundMexPro uses libsndfile 1.x for reading sound files (see also below). See 
http://www.mega-nerd.com/libsndfile/ for more information. 

FFTW 
SoundMexPro uses the FFTW package developed at MIT by Matteo Frigo and 
Steven G. Johnson and released under GNU General Public License. 

 
LIBSNDFILE LICENSE 
SoundMexPro uses the libsndfile library written by Erik de Castro Lopo and others 
(http://www.mega-nerd.com/libsndfile/). It is published under the GNU Lesser General Public 
License (LGPL) either version 2.1 or optionally version 3 (see files libsndfile_lgpl_v2_1.txt and 
libsndfile_lgpl_v3.txt shipped with SoundMexPro).  
 

2 Introduction 
SoundMexPro is a powerful tool for sound applications in MATLAB®, GNU Octave and Python on 
Microsoft Windows® SoundMexPro is especially designed for acoustic measurement tasks 
(Psychoacoustics, Physical Acoustics, Neurophysiology). 
 
The main features of SoundMexPro are: 

- Multichannel sound output and recording using the ASIO sound interface (sample-accurate 
synchronization of multiple playback and recording devices). 

- Reading multiple audio file formats 
- Unlimited number of virtual audio tracks (virtual recording/mixing studio). 
- Real-time mixdown of virtual tracks to output channels with separate level control for tracks 

and channels. 
- Record from multiple devices synchronously to disk (hard disk recording). 
- Continuous sound ‘adding’ mode: new audio data can be added at any time while device is 

already playing (e.g. for online stimulus generation). 
- Retrieve recorded data directly to MATLAB® while device is recording (e.g. for online 

evaluation). 
- Threshold driven recording. 
- DSP-Plugins for real-time signal processing 

o Script based plugins: user defined MATLAB® commands are called for every sound 
buffer on the fly. Processed data are sent to the soundcard. 
NOTE: script based plugins are not supported with Python 



 

SoundMexPro documentation   5 

o VST-Host for loading Steinberg “Virtual Studio Technology“ (VST) effect plugins. 
- Direct low latency I/O: recorded data can be directly (or after processing the data with DSP-

Plugins) mapped to multiple tracks.  
- file-to-file processing 
- Xrun (dropout) detection. 
- Special command for ‘highlighting’ buttons on a MATLAB® window: buffer accurate 

highlighting at desired playback ‘positions’ for signal-synchronous user feedback (not 
supported with Python) 

 
Important note: For understanding the basic concept of SoundMexPro it is very important to get 
familiar with (and distinguish between) ‘Virtual Tracks’ and ‘Device Channels’. Please read chapter 
4.3  very carefully where these terms are introduced. 
 
A demo version of SoundMexPro is available for free. The demo version has the following 
restrictions: 

- a demo message is shown on ‘init’ and after every few minutes 
- sound input and output is stopped every few minutes 
- additional sound (the spoken words ‘SoundMex demo’) is added to all playbacks and 

recordings at random times 

2.1 What’s new? 

2.1.1 Changes form version 2.x to version 3.x 
Version 3.0.0.0 introduces a native 64bit version of SoundMexPro. Both versions have the same 
functionality with the following exceptions: 

- Total memory available for SoundMexPro: the 32bit version of SoundMexPro is limited to a 
maximum of 2GB of memory. In realistic scenarios this will leave around 1.4 GB for your 
loaded stimuli, recorded data, plugins and so on. This restriction does not apply for the 64bit 
version.  

- The 32bit version of SoundMexPro can only load 32bit VST plugins, whereas the 64bit version 
only loads 64bit VST plugins. 

A dark mode was added: SoundMexPro uses the dark mode automatically according to your 
Microsoft Windows® settings. You can force dark or light mode respectively by setting a 
corresponding value in the file “soundmexpro.ini” in the bin or bin64 subdirectory of your 
installation: within the section [Settings] add the line 

DarkMode=1 

where a value of 1 enables dark mode, 0 enables light mode. 

2.1.2 Changes form version 1.x to version 2.x 
With version 2.0 SoundMexPro introduced many new features and a few changes. You can find the 
complete version history of SoundMexPro on the SoundMexPro homepage at 

http://www.soundmexpro.de/download/history.txt 
 

New commands: 
- channelname, trackname, recname: symbolic names can be set for tracks, output and input 

channels and these names can be used in all commands for the parameters ‘track’, ‘output‘ 
and ‘input respectively besides their indices 

- recvolume: sets recording gain 
- tracklen: returns total length of loaded data in tracks 



 

SoundMexPro documentation   6 

- cleartrack: clears data in particular tracks 
New features for loading sound data (file or vector): 

- object gains: each loaded object can get it’s own gain 
- crossfading between loaded sound objects 
- object ramps: each loaded object can have own volume ramps 
- loop ramps: each loaded object can have own volume ramps for each loop 
- loop-crossfade: each loaded object can do a crossfade when looping 

Other new features: 
- VST plugins for recording channels 
- Support for compiled MATLAB® script DSP plugins 
- Most commands now allowed while sound output is already running 

New GUI features: 
- Update of wavedata in trackview while running allowed 
- Ctrl + left mouse button sets playback position in trackview 
- Mixer now has a variable width 

Changes in default behaviour: 
- Default value for parameter ‘autocleardata’ in command ‘init’ is now 0  
- Default value for parameter ‘wavedata in commands ‘showtracks’ and ‘updatetracks’ is now 

1  
- Default GUI (command ‘show’) was removed. Command ‘show’ now is identical to 

‘showmixer’ 

3 Getting started 

3.1 System Requirements 
SoundMexPro runs on MATLAB® 5.3 (R11.1) and above, GNU Octave 3.8 and above or Python 3 on 
Microsoft Windows® 95 and above (32-bit and 64-bit).  
For Python 3 the ‘numpy’ package is required. The tutorials and examples are using more packages 
(e.g. ‘soundfile’) that have to be installed when running the examples. 
There are no special requirements on the computer. However, the more power your computer has, 
the more tracks, devices and DSP-plugins can be handled simultaneously without dropouts.  
SoundMexPro runs with every sound card that is shipped with an ASIO driver. However the support 
of all features with all sound cards cannot be guaranteed.  
If you want to use a soundcard that is not shipped with an ASIO driver you may use a universal ASIO 
driver for WDM (e.g.  ASIO4ALL, see http://www.asio4all.com/ or Jack with JackRouter, see 
http://jackaudio.org/). 
If you cannot use one of these universal drivers for any reason you may use the ‘wdm’ mode of 
SoundMexPro supporting two output channels only (no inputs supported, see commands 
‘setdrivermodel’ and ‘getdrivermodel’).  

3.2 Installing SoundMexPro 
Run the downloaded installer and follow the installation instructions. The following files will be 
installed on your computer: 
 

Directory File(s) Description 

. COPYING GNU GPL license information 
bin 

bin64 

libsndfile-1.dll, 
libfftw3f-3.dll, 
mpluginmex.old.dll, 

Main program files and libraries. 
Add this path to the search path of 



 

SoundMexPro documentation   7 

mpluginmex.mexw32, 
mpluginmex.mexw64, 
mpluginmex.mex 

SMPIPC.exe, 
SoundDllPro.dll, 
soundmexpro.old.dll, 
SoundDllProLoader.exe,  
soundmexpro.mexw32, 
soundmexpro.mexw64 
soundmexpro.mex, 
soundmexpro.py, 
SoundMexProPy32.dll, 
SoundMexProPy64.dll 

 

smp_stft.m, 
smp_stftinit.m 

 

 

SMPPlugin.m 
 

 

soundmexpro_showdevs.m 

soundmexpro_showcfg.m 

soundmexpro_trackmap.m 

 

 

smp_disp.m 

 

 

borlndmm.dll,  
cc32c280mt.dll (bin only), 
cc64280mt.dll  (bin64 only), 
HTTools10.bpl,rtl280.bpl, 
rtl280.de, Tee928.bpl, 
TeePro928.bpl, TeeUI928.bpl, 
vcl280.bpl, vcl280.de, 
vclimg280.bpl, vclimg280.de, 
vclx280.bpl, vclx280.de, 
xmlrtl280.bpl, xmlrtl 280.de 

MATLAB®, GNU Octave or Python. 
 
 
 
 
 
 
 
 
 
 
Tools used for spectral script based 
plugins  
 
Tool script to be used for compiling 
script plugins 
Tool scripts for examination of 
available hardware and 
configuration, see tutorial 
t_02b_config_tools.m and 
commented scripts themselves. 
 
Helper script used in tutorials and 
examples.  
Runtime libraries. If you ship a 
compiled application using 
SoundMexPro you must ship these 
runtimes as well! 
 

bin-octave\??? mpluginmex.mex 
soundmexpro.mex 

binaries needed for different 
versions of Octave. The subdirectory 
name corresponds to the Octave 
version containing 32bit and/or 
64bit versions in the corresponding 
subdirectories. Copy these files to 
the BIN directory.  
NOTE: the 32bit/64bit version must 
correspond to your used version of 
Octave (not of SoundMexPro). 
The installer copies most current 
Octave binaries shipped with 
SoundMexPro to the BIN and BIN64 
directory. See below for compiling 
MEX files for other Octave versions 

tutorial Various tutorial MATLAB® / GNU Octave 



 

SoundMexPro documentation   8 

script files 
tutorialpy Various Tutorial for Python 
examples Various advanced examples and examples 

using the VST plugins shipped with 
SoundMexPro and a MIDI example 

manual SoundMexPro.pdf 

SoundDllProLoader.pdf 

HtVst-Plugins.pdf 

lgpl.txt 

PDF Help, LGPL license information 

manual/html SoundMexPro.html 

+ related files 
HTML help. Copy HTML and 
subfolder ‘SoundMexPro-Files’ to 
your MATLAB® ref path (see below) 

mex _README.txt 

*.cpp and *.h 
Compiling instructions and source 
files for compiling the primary MEX 
files for MATLAB and GNU Octave 

plugins *.dll 32bit VST plugins shipped with 
SoundMexPro 

plugins64 *.dll 64bit VST plugins shipped with 
SoundMexPro 

waves various wave files used by the tutorial and 
the examples 

 

3.2.1 Setting up SoundMexPro for MATLAB®, GNU Octave and Python 
After the installation you have to adjust paths in MATLAB® / GNU Octave / Python in order to use the 
32bit or the 64bit version of SoundMexPro respectively. For differences between the 32bit and 64bit 
version please refer to chapter 2.1.1 . 
You can use both the 32bit and 64bit version of SoundMexPro all versions of MATLAB® / GNU Octave 
/ Python, the architecture (32bit/64bit) do not have to be the same.  
In MATLAB® and GNU Octave you need to add the ‘bin’ or ‘bin64’ subdirectory to your MATLAB®  / 
GNU Octave path either using the ‘addpath’ command in your scripts or by adding it permanently. 
For using SoundMexPro with Python you have to add the path using the ‘sys.path.append’ command 
followed by the import command ‘from soundmexpro import soundmexpro’. 

3.2.2 Compiling MEX files GNU Octave 
MEX files for GNU Octave usually are incompatible between different versions. Additionally the 32bit 
MEX-files and 64bit MEX-files are using the same file extension ‘.mex’. Therefore you have to take 
care manually that the correct MEX files can be found in the ‘bin’ or ‘bin64’ subdirectory of 
SoundMexPro respectively. Important note: if you use a 32bit (64bit) version of Octave you will 
always need the 32bit (64bit) MEX files, regardless of the used SoundMexPro version! 
Several precompiled Octave MEX files is shipped with SoundMexPro, they can be found in the ‘bin-
octave’ subdirectory in subdirectories named as the version number. If the files for your Octave 
version are not available, you will have to compile the MEX files yourself. This can be done with 
Octave out of the box, please refer to the file /mex/_README.txt for instructions. 

3.2.3 SoundMexPro on MATLAB® 7.1 or below 
If you want to use SoundMexPro on MATLAB® 7.1 or below you must rename the files 
bin/soundmexpro.old.dll to bin/soundmexpro.dll and bin/mpluginmex.old.dll to bin/mpluginmex.dll 



 

SoundMexPro documentation   9 

3.2.4 Accessing SoundMexPro help from MATLAB® 
If the BIN directory is part of the MATLAB® search path, you can access the HTML-help of 
SoundMexPro from the MATLAB® help browser (MATLAB® version >= 7.0). Call the ‘doc’ command 
and select ‘SoundMexPro’ from the content pane. Note that you need to restart MATLAB® after 
adding the BIN directory to the search path before SoundMexPro will be listed on the content pane! 
To call the HTML-help of SoundMexPro directly from MATLAB® please use the ‘web’ command rather 
than ‘doc SoundMexPro’ (this not supported by all MATLAB® versions): 
 

 
  web('c:\soundmexpro\manual\html\soundmexpro.html'); 

 or 

  web('soundmexpro.html', '-helpbrowser'); 

 

 
NOTE: the second syntax only works, if you have added the Manual\HTML path of SoundMexPro to 
the MATLAB® search path. 
If you want to access the HTML-help through the MATLAB® command 'doc SoundMexPro' on 
MATLAB® versions older than 7.0 please copy the content of the subfolder 'Manual\HTML' from your 
SoundMexPro-Installation to the directory 
 
 

<MATLAB path>\help\techdoc\ref   (e.g C:\MATLAB6p5\help\techdoc\ref) 
 

3.3 Licensing SoundMexPro 
Starting with version 2.9.0.0 SoundMexPro is open-source freeware published under the GNU GPL 
license. For details, please refer to the file COPYING in the root directory of your installation. 

3.4 Uninstalling SoundMexPro 
An uninstaller is shipped with SoundMexPro. Run the uninstaller from the control panel. 

 
  



 

SoundMexPro documentation   10 

4 The SoundMexPro Interface 
This chapter describes the general command interface and architecture of SoundMexPro. All 
SoundMexPro commands are listed and described in the command reference in chapter 13. 
The command interface for MATLAB/Octave and Python are very similar, however some important 
differences apply. The following subparagraphs describe the two interfaces. In later examples within 
this document the examples are shown in both variants, where 
 

 
gray boxes show MATLAB/Octave syntax 

 

 

 
blue boxes show Python syntax 

 

The paragraph after the “General Command Description” contains a description of the internal 
SoundMexPro architecture using ‘output channels’ and ‘virtual tracks’. Read this carefully, because it 
is very important to get the idea of this concept to be able to tap the full potential of SoundMexPro. 
SoundMexPro is shipped with a tutorial and some advanced examples. It is highly recommended to 
examine the tutorial thoroughly. It can be found in the ‘tutorial’ or ‘tutorialpy’ 
subdirectory respectively of the SoundMexPro installation. The files named ‘t_???’ are part of the 
tutorial (the others are helper scripts). The file names are chosen (if sorted alphabetical) to give the 
tutorial a logical order with an ascending level of complexity using more and more commands of 
SoundMexPro starting with ‘t_01_basics’. 
In the ‘examples’ subdirectory you may find some advanced examples that might be useful such as a 
pair comparison script with cross fade, SNR adjustment ‘on-the-fly’ and some VST examples. 
The tutorial and the examples are described in detail in chapter 6. 

4.1 General Command Description (MATLAB/Octave) 
 
All SoundMexPro commands have a similar syntax: 
 

 
[errocode, outarg1,…] = soundmexpro('command', par1, val1, par2, val2,…); 

 

 
All command arguments (except for command ‘help’) have to be specified in pairs of ‘parameter 
name’ and ‘value’, e.g. 
 
 

soundmexpro('loadfile', ...                       % command name 

            'filename', 'noise_16bit.wav', ...    % name of wavefile 

            'track', [0 1], ...                   % tracks, where to play file 

            'loopcount', 1 ...                    % play it 1 time 

 ); 

 

 



 

SoundMexPro documentation   11 

Most of the parameters have default values and thus can be omitted, some are mandatory (see help 
on commands below). 
Note: all indices in SoundMexPro are zero-based, i.e. the first output, track or input respectively has 
index 0, second has index 1 and so on.  
However, you can assign symbolic names to all outputs, tracks and inputs using the commands 
‘channelname’, ‘trackname’ and ‘recname’. Afterwards you can use these names in all commands 
optionally instead of their indices. 
 
All commands return one output argument at least. This return value is an error code and indicates 
success or failure of the command itself, where 1 is returned on success and 0 on any error. Evaluate 
this first return value to react on any error before calling further SoundMexPro commands, e.g.: 
 

success = soundmexpro('init'); 
if (~success) 

 error('Cannot initialize SoundMexPro!'); 
end 

 

 
Commands with additional return values write these to outarg[1] … outarg[n], e.g.: 

 
[success, lasterror] = soundmexpro('getlasterror'); 

if success ~= 1 

    error('error calling getlasterror'); 

end 

disp(['the last error was ' lasterror]);  

 

 
Important notes: 

- If any error occurs within a command, the additional output arguments may contain only a 
scalar value (zero) and must not be used. In this case only the error code is valid!!  

- All string values are returned as cell arrays!  
- The standard error code return argument is omitted in the list of outargs in the ‘help’ 

command and in the command tables below. All commands return the error code as first 
outarg! 

 

4.2 General Command Description (Python) 
The interface to the SoundMexPro libraries is implemented in ‘soundmexpro.py’ in the BIN 
subdirectory of your SoundMexPro installation. You may check/change the file for your needs. 
The path to this script and the binaries has to be added e.g. using sys.path.append. 
 
All SoundMexPro commands have a similar syntax: 

 
retvals = soundmexpro('command', args) 

 

 
The arguments passed to a command in ‘args’ and the return values ‘retvals’ are dictionaries. 
In this example the dictionary is created beforehand: 



 

SoundMexPro documentation   12 

 

args = {'filename' : 'noise_16bit.wav',     # name of wavefile 

        'track' : [0, 1],                   # tracks, where to play file 

        'loopcount' : 1                     # play it 1 time 

} 

soundmexpro('loadfile', args) 

 

 
Most of the parameters have default values and thus can be omitted, some are mandatory (see help 
on commands below). 
Note: all indices in SoundMexPro are zero-based, i.e. the first output, track or input respectively has 
index 0, second has index 1 and so on.  
However, you can assign symbolic names to all outputs, tracks and inputs using the commands 
‘channelname’, ‘trackname’ and ‘recname’. Afterwards you can use these names in all commands 
optionally instead of their indices. 
All commands return one dictionary entry ‘success’. However, if the value of this value is not 1, 
(which indicates success) then the script soundmexpro.py raises an exception. If you want to change 
this behaviour please edit the corresponding part in soundmexpro.py (see the comments in the file 
as well). You may introduce (own) error handling by catching the corresponding exception. In this 
example the dictionary with arguments is created ‘inline’: 
 
try: 

soundmexpro('init', {'driver' : 'MyDriver'}) 
except:  

 print('cannot initialize SoundMexPro') 

 

 
Commands with additional return values write these the retvals dictionary and can be rad from it 
after the function call, e.g. 

 
retvals = soundmexpro('getlasterror') 

print('the last error was {}'.format(retvals['error'])) 

 

 

4.3 Architecture: Output Channels and Virtual Tracks 
The descriptions in this chapter reference to some SoundMexPro commands, that will be described 
later, but they should give you an idea here, which commands are important for understanding the 
basic concept of SoundMexPro.  
The basic idea of SoundMexPro is based on the discrimination between output channels (hardware, 
called ‘output channels’ below) and virtual audio data tracks (software, called ‘tracks’), where audio 
data can be loaded to. Each track can be connected (‘wired’) to an output channel and - like in a 
mixing desk - multiple tracks can be connected to the same output channel: these tracks (i.e. the 
audio data of these tracks) are mixed on the fly to the output channels. Each output channel of 
SoundMexPro (containing a ‘mixdown’ of multiple tracks) can be connected to one channel of the 
sound card (called ‘device channel’ below). 
The figure below shows an example using three output channels connected to three corresponding 
device channels, and six virtual tracks are used. 
 



 

SoundMexPro documentation   13 

Figure 1: Output channels and virtual tracks 
 
The command sequence for setting up SoundMexPro for the configuration shown above is described 
here in detail (in anticipation of the command list below, most arguments omitted to use default 
values): 
 
% initialize SoundMexPro with three output channels and six track 
soundmexpro('init',      ... % command name 

            'output', [0 5 6], ... % use three output channels, connected to 

             ... % device channels 0, 5 and 6 of the sound card 

            'track', 6     ... % use 6 tracks 

            ); 

 

 
# initialize SoundMexPro with three output channels and six track 
soundmexpro('init',        # command name 

             {  

              'output' : [0, 5, 6], # use three output channels, connected to 

               # device channels 0, 5 and 6 of the sound card 

              'track' :  6     # use 6 tracks 

     } 

) 

 

 
Note: after initialization the three ‘allocated’ output channels are enumerated in SoundMexPro 
starting with 0, i.e. first sound card device channel (0) will have output channel index 0 in 
SoundMexPro, sixth sound card device channel will have output channel index 1 and seventh sound 
card device channel will have output channel index 2 .  

virtual playback  
cursor Track 

Volume 

Track 0 file 1 file 2
  

vector 1 

Track 1 vector 2  
  

file 3 

Track 2 file 4
 

vector 3 

Track 3 file 5
 

file 6
  

vector 4 

Track 5 vector 5   

Track 4 file  7
  

Channel 0 
0

1

2

3

4

5

6

7

Channel 1 

Channel 2 

Sound card 

Master 
Volume 



 

SoundMexPro documentation   14 

 
The default track mapping (wiring of tracks to output channels) after command ‘init’ (if ‘track’ 
parameter is omitted) is “one track per output channel”, where the first track is connected to the 
first output channel, second track to second output channel, and so on. In this example six tracks and 
three output channels were specified: the tracks are mapped ‘circular’ to the available output 
channels. ‘Circular’ here means that a track with number TrackIndex is mapped to output channel 
number ChannelIndex calculated by 

 
ChannelIndex = mod(TrackIndex, TotalNumberOfOutputChannels); 

 
In this example the tracks 0 and 3 are connected to output channel 0, tracks 1 and 4 are connected to 
output channel 1 and tracks 2 and 5 are connected to output channel 2 (default mapping after ‘init’). 
Note: this mapping does not yet fit our ‘requirements’ for the example! 
This default mapping can be changed with the command ‘trackmap’ to match the example from the 
requirements: 
 
% map (route) first two tracks to channel 0, next three tracks to channel 1 and 
% sixth track to channel 2 

soundmexpro('trackmap',      ... % command name 

             'track', [0 0 1 1 1 2] ... % track map to set              

   ); 

 

 
# map (route) first two tracks to channel 0, next three tracks to channel 1 and 
# sixth track to channel 2 

soundmexpro('trackmap',                   # command name 

             {  

              'track' : [0, 0, 1, 1, 1, 2] # track map to set                  

     } 

) 

 

Now the ‘wiring’ is complete and matches exactly the configuration shown in Figure 1. The volume 
(linear gain) of each track can be adjusted with the command ‘trackvolume’, the final ‘master 
volume’ of an output channel additionally can be adjusted using the command ‘volume’. 
The next step is to load audio data (files or MATLAB® vectors) to the tracks (green boxes in Figure 1) 
using the ‘loadfile’ or ‘loadmem’ command respectively. The different number of ‘data boxes’ in the 
tracks indicate that all tracks may be filled with different data independently, files and vectors may 
be mixed.  
The command ‘start’ starts the signal output. In the example the output will start with a sum of ‘file 
1’, and ‘vector 2’ on sound card channel 0, a sum of and ‘file 4’, ‘file 5 ‘ and ‘file 7’ on sound card 
channel 5 and with ‘vector 5’ on sound card channel 6. The output proceeds as if a ‘virtual playback 
cursor’ shown as dotted line in Figure 1 would run parallel through all tracks. However, this picture 
does not fit exactly, if loops are used for particular audio data.  But the picture is correct again, if you 
imaginary ‘copy’ the audio data to be looped n times into the corresponding track. 
 
The example above shows the general ‘strategy’ to find the appropriate configuration of 
SoundMexPro for a particular task: 

- Determine how many independent channels (i.e. soundcard outputs/speakers) you need. 
Specify this number of channels in argument ‘output’ (with respect to the ‘real’ hardware 
channels of your sound card you want to use), 



 

SoundMexPro documentation   15 

- Determine the total number of independent tracks (i.e. sound data you need at the same 
time - in parallel). Specify this number of tracks in the ‘track’ argument of command ‘init’. If 
you don’t need any mixing, then omit the ‘track’ argument: one track for each channel will 
be created (with a ‘straight’ connection from track 0 to channel 0, track 1 to channel 1 and so 
on). 

- Determine the required ‘wiring’ of tracks to output channels, i.e. which track(s) are 
connected to which output channels and set this ‘mapping’ using the ‘trackmap’ command. 

 
For simplicity reasons the example above describing the difference between ‘tracks’ and ‘output 
channels’ only used simple signal output without any DSP plugins and/or signal input (recording). The 
complete ‘processing scheme’ for each output channel, i.e. how samples are generated and 
processed before they are sent to the sound card driver consists of the following steps (see Figure 2, 
the numbers at the bottom correspond to the enumeration below): 

1. Track data are retrieved (from file or vector / array) 
2. Data from input channels (recording channels) that are ‘mapped’ to one or more tracks with 

command ‘iostatus’ are added to the corresponding track(s) after the recording volume 
(command ‘recvolume’) and the recording VST plugins were applied. Multiple input channels 
may be mapped to the same track (dashed line) or one input channel may be mapped to 
multiple tracks as well (dotted line).  

3. Track volumes are applied. 
4. The completely calculated track data are passed to the track VST plugins for processing. 

NOTE: depending on your VST plugin configuration data across tracks may be mixed (see 
chapter 8.2). 

5. Generate output data from track data: iteration through all virtual tracks (containing the data 
processed so far) with ascending indices. The track data are ‘applied’ to ‘their’ output 
channel, where ‘applied’ means 

a. they are added to the output (default) 
b. the current output is multiplied sample by sample with the data, if the track is in 

multiplying mode (see command ‘trackmode’). In this case the ‘order’ of the tracks is 
important: if you have e.g. initialized 4 tracks for an output channel and have set the 
third track to multiplying mode, then the sum of the first two tracks is multiplied 
with the third track, and the fourth track is added to the result of that operation! 

6. The completely calculated output channel data are passed to the master VST plugins of the 
output channel for processing. NOTE: depending on your VST plugin configuration data 
across output channels may be mixed (see chapter 8.2). 

7. The completely calculated input and output channels are passed to the MATLAB® script DSP 
interface of SoundMexPro. Important note: the input channels passed to the MATLAB® 
script DSP interface are the recorded data received from the driver and processed by the 
optional recording VST plugins (dash-dotted line). Within the interface you can mix/add/copy 
data between the inputs and outputs. This means that there are two ways of mixing inputs to 
the outputs: either using command ‘iostatus’ (see step 2 above) or within the MATLAB® 
script DSP interface of SoundMexPro.  

8. Afterwards the processed data are passed to the final VST plugins of the output channel for 
processing. NOTE: depending on your VST plugin configuration data across output channels 
may be mixed (see chapter 8.2). 

9. Finally the channel volume (see command ‘volume’) is applied. 
 



 

SoundMexPro documentation   16 

 
Figure 2: Output processing scheme for one soundcard output channel 

 
NOTE: after all these calculations the data are passed to the driver. If the data contain values above 1 
or below -1 clipping will occur. So you have to take care (especially when using multiple tracks), that 
the sum of your data does not exceed these limits! 
 
The light blue boxes labelled ‘Harddisk Recording’ and ‘debugsave’ show how data are saved to disk 
in SoundMexPro: 

- By default recording data (command ‘recfilename’) are written WITHOUT applying signal 
processing except for ‘recvolume’, see “Harddisk recording A” in the figure. 

- If you want to record data that are processed by VST recording plugins and by the MATLAB® 
script DSP interface (“Harddisk recording B” in the figure) then you have to specify the option 
“recprocesseddata” with value “1” on “init”! 

- Data saved with command ‘debugsave’ store the completely processed data of an output 
channel. 

Track 

Volume 

Track 0 data x
 

Track 1 data y  

Track 2 data z
  

VST 

VST 

VST 

MATLAB 

Master 

VST- 

Plugin 

Master 

Script- 

Plugin 

 

      1            2      3       4            5          6         7         8      9 

soundcard recording channels soundcard output channels 

VST VST VST VST 
Recording VST-Plugins 

Track 

VST- 

Plugins 

Recording Volume 

  
Harddisk Recording A 

debugsave 

 

VST VST Channel 1 

Master 

Volume 

Final 

VST- 

Plugin 

 Harddisk Recording B 



 

SoundMexPro documentation   17 

It is always recommended to record unprocessed data to disk and apply any signal processing later. 
In this way you can always fall back to the original data later again, otherwise you only will have the 
processed data available.  
In general you can use an unlimited number of virtual tracks and connect an unlimited number of 
tracks to each output channel, however, it depends on the performance of your computer (and 
number of used plugins - and their individual computing time) how many tracks you can use without 
dropouts (xruns).  

 

4.4 Audio data in SoundMexPro: files and vectors/arrays 
SoundMexPro supports loading of audio data in two different ways: 

- Command ‘loadmem’: with this command audio data can be loaded directly from 
vectors/arrays to SoundMexPro. The data have to be aligned as one column per audio 
channel and have to be scaled between -1 and 1. When loading vectors the data are copied 
within SoundMexPro. Otherwise every change to a vector/array during playback would crash 
the application. But this means, that all audio data are resident in memory twice! Thus – 
whenever feasible – the ‘loadfile’ should be preferred. 

- Command ‘loadfile’: using this command SoundMexPro reads audio data ‘on-the-fly’, i.e. it 
does not load the complete file to memory but performs a buffered read during playback. 
Therefore this method consumes less memory than ‘loadmem’. However: since the data are 
read during playback it is highly recommended not to load files from network drives! 

The commands ‘loadfile’ and ‘loadmem’ have a huge number of optional parameters including gain, 
loops, ramps, crossfades, building snippets. Please read the command reference in chapter 13 for a 
full description and check the corresponding tutorial scripts. 
The following subsections describe a few special features in more detail. These details apply for 
audio files and vectors/arrays, thus the term ‘audio objects’ is used in the following for both types of 
audio data. 

4.4.1 Loops, ramps and crossfades 
SoundMexPro supports different types of ramps (amplitude/gain envelopes) when loading audio 
objects: 
Parameter ‘ramplen’: length of ramp to be applied in the beginning and at the end of the complete 
object after applying all loops, offsets ...  
Parameter ‘loopramplen’: length of ramp to be applied in the beginning and at the end of each loop 
The figure below shows an example of a gain ramp for an object that was loaded with a loopcount of 
3. The dashed lines mark the beginning of a new loop. A startoffset > 0 was specified (the first loop is 
shorter). A ramplen of x samples and a loopramplen of y samples were specified. 
 

 
Figure 3: object ramps 

 
Additionally SoundMexPro supports two types of crossfades: 
Parameter ‘crossfadelen’: Crossfades between different audio objects: the last samples of an audio 
object are ramped down and added to the first samples of the following audio object ramped up. The 

y   y x x y   y 



 

SoundMexPro documentation   18 

desired crossfade length has to be specified when loading the second of the two audio objects to be 
crossfaded. The figure below shows an example, where two audio objects where loaded, the second 
with a crossfadelen of x samples. For better illustration of the overlap the two objects are shown 
stacked, the final output is the sum of both: 
  

 
Figure 4: crossfade between different audio objects 

NOTE: the total playback length will be shorter than the sum of the total lengths of the two objects 
by x. 
 
Parameter ‘loopcrossfade’: Crossfades between loops within an audio object. If loopcrossfade is set 
to ‘1’ then the value of parameter ‘loopramplen’ is used for this ‘object-internal’ crossfade. In the 
example shown below an object was loaded with a loopcount of 3, a loopramplen of x samples and 
loopcrossfade 1. For better illustration of the overlap the three loops are shown stacked, the final 
output is the sum of all three. 
 
  

 
Figure 5: crossfade in looped audio objects 

NOTE: the total playback length will be shorter than loopcount*objectlength by (loopcount-1)*x 

4.4.2 Channel ‘alignment’ 
When using multichannel audio objects to SoundMexPro they are loaded with keeping their channels 
‘aligned’. This means, that the channels are not shifted against each other, even if the tracks, where 

loop 1 

loop 3 

loop 2 

x 

x 

object 2 

object 1 

x 



 

SoundMexPro documentation   19 

the channels are loaded to, already contain data with different lengths. This is illustrated with an 
example in Figure 6. 

 

 
Figure 6: Channel alignment 

The tracks 0 and 1 already contained data of different length (green boxes) when loading the stereo 
‘file 4’ (blue boxes) with the command: 
 
 

soundmexpro('loadfile', ...                       % command name 

            'filename', 'file4', ...        % name of wavefile 

            'track', [0 1], ...                   % tracks, where to play file 

            'loopcount', 1 ...                    % play it 1 time 

 ); 

 

 
 
 
 
 

soundmexpro('loadfile',                       # command name 

            { 

              'filename' : 'file4',        # name of wavefile 

              'track' : [0, 1],               # tracks, where to play file 

              'loopcount' : 1               # play it 1 time 

            } 

) 

 

In this case SoundMexPro automatically inserts zeros into track 1 (pink box) to keep the channels of 
‘file 4’ aligned.  
If you want to load the two channels of ‘file 4’ in such a scenario ‘unaligned’ you have to do two 
subsequent calls to command ‘loadfile’ to load the two channels separately: 
 

% load first file channel to track 0 (second file channel neglected by specifying 

% a negative value) 

soundmexpro('loadfile', ...          % command name 

            'filename', 'file4', ... % name of wavefile 

            'track', [0 -1], ...     % tracks, where to play file.  

            'loopcount', 1 ...       % play it 1 time 

 ); 

 

virtual playback  
cursor 

Track 0 file 1 file 2
  

vector 1 

Track 1 vector 2  
  

file 3 

file 4, channel 0  

zeros file 4, channel 1  



 

SoundMexPro documentation   20 

% load second file channel to track 1 (first file channel neglected by specifying 

% a negative value) 

soundmexpro('loadfile', ...          % command name 

            'filename', 'file4', ... % name of wavefile 

            'track', [-1 1], ...     % tracks, where to play file.  

            'loopcount', 1 ...       % play it 1 time 

 ); 

 

 
 

# load first file channel to track 0 (second file channel neglected by specifying 

# a negative value) 

soundmexpro('loadfile',            # command name 

            { 

              'filename' : 'file4',  # name of wavefile 

              'track' : [0, -1],  # tracks, where to play file.  

              'loopcount' : 1        # play it 1 time 

            } 

) 

 

# load second file channel to track 1 (first file channel neglected by specifying 

# a negative value) 

soundmexpro('loadfile',            # command name 

            { 

              'filename' : 'file4',  # name of wavefile 

              'track' : [-1, 1],  # tracks, where to play file.  

              'loopcount' : 1        # play it 1 time 

            } 

) 

 

This leads to the following data status in the two tracks: 
 

 
Figure 7: Channel alignment (not aligned) 

 

4.5 Buffer configuration 
When playing sound through a soundcard using the ASIO interface audio data are streamed to the 
soundcard driver, i.e. buffers with audio data are passed to the driver on request: the driver calls the 
sound application when it needs new audio data. If this call happens, the data are needed 

virtual playback  
cursor 

Track 0 file 1 file 2
  

vector 1 

Track 1 vector 2  
  

file 3 

file 4, channel 0  

file 4, channel 1  



 

SoundMexPro documentation   21 

‘immediately’ and if the operating system (or your MATLAB ® task) is very busy at the moment, then 
audible dropouts, so called xruns may occur.  
First of all an application must be capable to provide audio data for the driver at a sufficient speed, 
i.e. on average the processing/generation of one audio data block must not take longer than the 
output of a block of same size. If the processing is too slow, then xruns are unavoidable (see example 
in tutorial t_07a_realtime_plugin), the processing scheme has to be optimized, or offline processing 
has to be done. 
But xruns may occur sometimes even if the processing is fast enough: it may happen that the 
operating system (or your MATLAB ® script) produces heavy load temporarily exactly at the moment 
when audio data are requested by the driver. Then xruns will occur if no so called software buffering 
is done. Software buffering stores a particular number of processed (!) audio data blocks for passing 
them to the driver immediately. In this way some buffers are filled (pre-processed) when the 
processor load is not extremely high and on temporary heavy load there are always a few processed 
buffers available that only have to be passed to the driver.  
SoundMexPro supports software buffering. The number of buffers to be used is specified in the 
parameter ‘numbufs’ in command ‘init’ (default is 10 buffers). 
Software buffering will cause additional delay for the signal output. For applications, where only 
sound output or recording is done, this usually can be neglected, it does not interfere with standard 
playback/recording tasks (you may find a few additional buffers of zeros in recorded files). 
But in applications where SoundMexPro is used as DSP-Engine, i.e. data from the inputs are 
processed and played back directly (command 'iostatus’), then a minimum delay may be desirable. 
The minimum theoretical delay a ASIO driver will be able to provide is  
 

Dmin  = 2 * ASIOBufferSize + HardwareSpecific + DriverSpecific 
 

where  
ASIOBufferSize: buffer size that can be selected in the driver manufacturers soundcard dialog (see 
command ‘controlpanel’).  
HardwareSpecific: additional delay form hardware (e.g. anti-aliasing filters of D/A converter) 
DriverSpecific: any delay caused by the particular implementation of the driver itself 

 
The total delay in SoundMexPro will be 
 

Dtot  = Dmin  +  numbufs*ASIOBufferSize 
 
Thus you can minimize the delay by decreasing the ASIO buffer size and/or decreasing the number of 
used software buffers. In both cases the risk for the occurrence of xruns will increase. 

4.5.1 Sound card constraints: minimum delay  
Theoretically the minimum I/O delay can be achieved by disabling software buffering (i.e. setting 
‘numbufs’ to zero in command ‘init’). However, some sound card drivers are introducing two buffers 
with zeros in the beginning by mistake when no software buffering, but a separate processing thread 
is used (for ASIO insiders: the driver starts the output of its buffers immediately after the buffer 
switch returns instead of waiting for the ASIOOutputReady command). For these soundcards the 
minimum delay is 

D  = Dmin  +  ASIOBufferSize 
This can be achieved by setting ‘numbufs’ to 1 in command ‘init’. 
To check, if your sound card is concerned by this problem you have to measure the delay and 
compare the delay when setting ‘numbufs’ to 1 and setting ‘numbufs’ to zero. 



 

SoundMexPro documentation   22 

Most drivers of the sound cards from RME are affected by this problem. 

4.6 Supported audio file formats 
SoundMexPro uses the library libsndfile for reading audio files. It supports a huge number of audio 
formats (except for MP3). Amongst others the following formats are supported 

- Microsoft WAV 
- Ogg Vorbis 
- Sun/DEC/NeXT AU/SND 
- Commodore/Amiga IFF 
- Creative VOC 
- SoundForge W64 
- GNU Octave 2.0/2.1 MAT4/MAT5 
- FLAC 

 
For a complete list of supported formats please refer to the libsndfile homepage (http://www.mega-
nerd.com/libsndfile/). 
Recorded data are always stored as normalized single channel 32bit PCM wave files (one file per 
channel). 

5 Error Handling in SoundMexPro  
When trying to generate clean and stable programming code with any programming or scripting 
language it is essential to take care of accurate error handling. SoundMexPro provides a variety of 
commands/tools to implement error handling for two types of errors that might occur.    

5.1 Synchronous errors in SoundMexPro 
Every SoundMexPro command returns an error code as first return value to MATLAB® to indicate the 
success or failure of a particular command. This may include simple syntax errors as well as failures 
accessing the soundcard. Evaluating these return values carefully allows the user to detect problems 
immediately when they occur and avoid unpredictable script crashes, if one SoundMexPro command 
‘on-the-way’ fails.  

5.2 Asynchronous errors in SoundMexPro 
Errors that do not occur as immediate result of a call to a SoundMexPro command are called 
‘asynchronous errors’. Such errors cannot be reported to MATLAB® immediately (i.e. at the time of 
their occurrence) because there is no SoundMexPro command currently running, that may ‘accept’ 
any return value. Therefore asynchronous errors are stored and the next SoundMexPro command 
will fail and show the corresponding error indicating it as an asynchronous error. Such errors may 
occur during the runtime of SoundMexPro due to various reasons: 

5.2.1 Clipping 
The input or output of the device clips (overdrive). SoundMexPro detects and counts buffers, where 
I/O clipping occurs. The current value can be retrieved at any time with the command ‘clipcount’ and 
the user may react on eventually detected clipping e.g. by stopping the complete script. NOTE: 
clipping on the input is defined in SoundMexPro as two subsequent samples with +1 or -1 within one 
buffer.  
Clipping on the output is checked after applying signal processing and gains to detect clipping directly 
before D/A conversion. 
Clipping on the input is checked before applying any signal processing or gain to detect any clipping 
after A/D conversion. 



 

SoundMexPro documentation   23 

5.2.2 Xruns 
Dropouts occur in the input or output (so called ‘xruns’). SoundMexPro tries to detect xruns caused 
e.g. by too slow DSP processing within the plugin pipe. However, if the total processor load is very 
heavy SoundMexPro may not detect xruns. They can only be detected, if there is enough processing 
time left to let the soundcard itself send a request for new data! The current value can be retrieved 
at any time with the command ‘xrun and the user may react on eventually detected xruns e.g. by 
stopping the complete script.  
Additionally SoundMexPro distinguishes two types of XRuns 
‘Processing queue xruns’: these are dropouts in playback or recording due to slow DSP processing 
resulting in audible dropouts (or dropouts in recorded data). 
‘Visualization and hard disk recording dropouts’: these dropouts occur, if your hard disk is too slow 
for writing all data to disk or your computer is too slow to do the visualization of the data (if shown 
at all). These xruns result in dropouts in your recording, but not in the processing. Both tasks are 
performed in different threads where the processing thread has the higher priority. 
The command ‘xrun’ returns the sum of both types (for backwards compatibility), the number of 
processing and the number of ‘recording’-xruns separately. 

5.2.3 Data underrun 
A data underrun occurs in the output. A data underrun occurs, if the sound output is started 
(command ‘start’) and a channel has played all his data before receiving new data with ‘loadfile’, or’ 
loadmem’. In most applications this underrun is not of interest (usually the channels should run out 
of data after playing the desired samples), but e.g. for continuous stimulus generation it might be 
necessary to detect underruns (i.e. if you are too slow in generating new samples). The command 
‘underrun’ retrieves the current underrun status for all channels.  
Take e look at the tutorial script ‘t_04c_play_con_stim_gen.m’ 

5.2.4 Setting changed 
If the sample rate or buffer size of the driver is changed externally (e.g. from control panel of the 
driver) during signal output the device is stopped and the error message for command ‘asyncerror’ is 
set correspondingly. 

5.2.5 Fatal errors 
Fatal (unexpected) asynchronous errors during signal I/O occurs. Usually such errors should not occur 
(if no hardware error occurs) except if a plugin (script plugin or VST plugin) returns an error during 
signal processing. Please refer to the tutorial script ‘t_08_async_errors.m’ that shows how to detect 
such errors.  

6 Tutorial, Examples and Scenarios 
This chapter contains a description of the SoundMexPro tutorial, a (growing) collection of examples, 
‘special’ scenarios and extended explanations to particular commands. 
This chapter uses many of the SoundMexPro commands. Please refer to the command reference in 
chapter 13  for help on particular commands. 

6.1 The SoundMexPro Tutorial 
SoundMexPro is shipped with a tutorial. It is highly recommended to examine the tutorial 
thoroughly. It is located in the ‘tutorial’ or ‘tutorialpy’ subdirectory respectively of the SoundMexPro 
installation. The files named ‘t_???’ are part of the tutorial (the others are helper scripts). The file 
names are chosen (if sorted alphabetical) to give the tutorial a logical order with an ascending level 
of complexity using more and more commands of SoundMexPro. 



 

SoundMexPro documentation   24 

NOTE: scripts containing ‘_x_’ in their name are used by the tutorials described in the table below 
and should not be called directly. 

Filename Description 

t_00_setup_tutorial Helper script to select a sound card driver and sound 
card channels to be used for the tutorial and examples 

t_00b_init_tutorial Helper script that reads settings created with 
t_00_setup_tutorial in each tutorial file. 

t_01_basics This example shows very basic commands: initialization 
and track mapping, using the online help, retrieving 
version information and showing/hiding the ‘standard’ 
GUI. 

t_02_device_info Shows how to retrieve information about installed 
devices/sound cards and their available channels and 
properties. Additionally the usage of symbolic names for 
tracks is introduced. 

t_02b_config_tools Shows usage of the tool scripts 
soundmexpro_showdevs.m, soundmexpro_showcfg.m 
and soundmexpro_trackmap.m located in the BIN 
subdirectory of SoundMexPro. These scripts may be 
usefull to check available hardware or your current 
SoundMexPro configuration after 'init' and to 'generate' 
command parameters for 'init' or 'trackmap' 
respectively. 
Note: this tutorial and the tool scripts 
soundmexpro_showdevs, soundmexpro_showcfg and 
soundmexpro_trackmap are not available in Python 

t_03_error_handling Demonstrates standard and user defined error handling. 

t_04_play_loops_crossfades Shows special parameters to be used in commands 
‘loadfile’ and ‘loadmem’ concerning looping and 
crossfading of sound objects. 

t_04a_playback_wait Playing files and vectors/arrays in different conditions: 
blocking, non-blocking, play parts/snippets. 

t_04b_play_mix_volume This example introduces the usage of multiple tracks for 
mixing audio data on the fly including volume 
adjustment (mixing ration). Additionally the usage of the 
mixer and the trackview GUI are shown. 

t_04c_play_con_stim_gen Demonstration of ‘online-stimulus-generation’: audio 
data are added to the output while the device is running 
‘on-the-fly’ with respect to underruns. 

t_04d_play_mark_buttons Shows usage of the ‘highly specialized’ command 
‘setbutton’ for highlighting buttons on a MATLAB® GUI 
synchronized with particular sample positions of the 
sound output. 
NOTE: this tutorial is not available for Python 

t_04e_play_mute_pause Muting, pausing and ‘soloing’ (mute all other channels) 
of channels and tracks. 

t_04f_play_startthreshold Start device threshold driven (signal on input) 

t_05a_rec_standard Introduces recording to file. 

t_05b_rec_threshold_length Shows how to trigger recording by a threshold value 



 

SoundMexPro documentation   25 

(recording starts after threshold is exceeded in input 
audio data) and recording of predefined number of 
samples. 

t_05c_rec_getlivedata Demonstrates how to get recorded data snippets ‘live’ to 
MATLAB® vectors e.g. for online-analysis. 

t_06_direct_io Shows how to do direct I/O through SoundMexPro. 
Maybe combined with later ‘plugin’-tutorials to do 
realtime DSP. 

t_07a_realtime_plugin Introduces the realtime MATLAB® script plugins in the 
time domain. Easy example, where audio data are 
processed block by block in realtime during output. 
NOTE: this tutorial is not available for Python 

t_07b_realtime_plugin_spec Introduces the realtime MATLAB® script plugins in the 
frequency domain. Uses the STFT scripts stftinit.m and 
stft.m (BIN-directory) shipped with SoundMexPro. 
Simple implementation of one function 
(t_07b_x_stft_userfcn.m) to process spectra block by 
block in realtime during output. 
NOTE: this tutorial is not available for Python 

t_08_async_errors Example for occurrence and handling of asynchronous 
errors. 

t_09a_vst_simple Simple example using a VST plugin as described in 
chapter 8.2.1 

t_09b_vst_artificial Sophisticated ‘artificial’ plugin example using fantasy 
data and a gain plugin to demonstrate, how data are 
mapped/routed through the VST-Host of SoundMexPro. 

t_09c_vst_gain Simple plugin example using a VST plugin to change the 
output gain on the fly. 

t_09d_vst_recursion Example for the demonstration of recurse wiring within 
VST plugins. 

t_10_adm Basic example for the usage of “ASIO direct monitoring” 
(adm). 

t_11a_file2file Tutorial for file-to-file operation 

 

6.2 The SoundMexPro Examples 
Some advanced examples implementing common ‘tasks’ are located in subdirectories in the 
‘examples’ or ‘examplespy’ subdirectory respectively of SoundMexPro: 
 

Directory name / filename Description 

01 Adjustable SNR This example shows how to play a tone and a 
noise signal on the same hardware output 
channels using multiple tracks. A slider is used to 
adjust the SNR on the fly by adjusting the 
volume of the tone. 

02 Pair Comparison Two variants of a signal (one of them bandpass 
filtered) are loaded to different tracks. Button 
clicks do a cross fade between the two variants 
to do a smooth transition from one signal to the 



 

SoundMexPro documentation   26 

other. User may switch back and forth and select 
a ‘winner’ of the comparison. 

10 SineGenerator Sine generator that plays an online-generated 
sine signal. A slider is shown that allows realtime 
changing of the sine frequency. This example 
uses a MATLAB® script plugin in the time 
domain. 
NOTE: for Python this example uses a VST plugin 
instead 

11 Dynamic Bandpass Example showing how to implement an 
adjustable bandpass filter using a realtime 
MATLAB® script plugins in the frequency 
domain. The center frequency of the bandpass 
can be adjusted with a slider. 
NOTE: this tutorial is not available for Python 

12 BekesyTracking Bekesy-Tracking example using a MATLAB® 
script plugin. 
NOTE: for Python this example uses a VST plugin 
instead 

13 Threshold Driven Playback Playback driven by threshold detection on 
recording channel using a MATLAB® script 
plugin.  
NOTE: this tutorial is not available for Python 

20 VST Examples / vst_conv.m Shows usage of the fast convolution VST-plugin 
shipped with SoundMexPro. 

20 VST Examples / vst_equalizer.m Shows usage real and complex equalizer VST-
plugin shipped with SoundMexPro. 

20 VST Examples / vst_hetero_dyning.m Shows usage of the hetero dyning VST-plugin 
shipped with SoundMexPro. 

20 VST Examples / vst_visualize.m Shows usage of the visualization VST-plugin 
shipped with SoundMexPro. 

50 Compiled Script Plugin Example ‘How-to-example’ for creating and using 
compiled MATLAB® script plugins in compiled 
applications. 
NOTE: this tutorial is not available for Python 

51 SoundMexProLoader Example Example script for using the SoundDllProLoader 
(using SoundMexPro without MATLAB®, GNU 
Octave or Python) 

52 C++-API-Example Source code snippet in C++ demonstrating the 
SoundMexPro API (usage of the SoundDllPro.dll 
in your own code) 
See also the separate documentation 
SoundMexPro_Interface_Description.pdf 

 



 

SoundMexPro documentation   27 

6.3 Using SoundMexPro without MATLAB®, GNU Octave or Python 

6.3.1 Using the SoundDllProLoader 
A simple loader ‘SoundDllProLoader.exe’ is shipped with SoundMexPro. It is designed to load the DLL 
SoundDllPro.dll (including the main functions of SoundMexPro) for using it without MATLAB®, GNU 
Octave or Python. In this way it is possible to implement SoundMexPro-Tasks on computers that do 
not run MATLAB®, GNU Octave or Python.  
The loader is described in detail in the separate manual SoundDllProLoader.pdf, an example can be 
found in the examples subdirectory. 

6.3.2 Programming Interface (API) 
A simple programming interface to the main SoundMexPro-DLL ‘SoundDllPro.dll’ is available to call 
SoundMexPro directly from your own code. Please refer to the separate manual 
‘SoundMexPro_Interface_Description.pdf’ for details and check the corresponding example in 
examples subdirectory. 
 

7 SoundMexPro GUI interfaces 

7.1 The SoundMexPro ‘Mixer’ 
The commands ‘show’ and ‘showmixer’ show a mixer interface with volume, mute and solo controls 
for all tracks, output and input channels (Figure 8). 
Clicking the vertical gray bar left of the tracks, outputs and inputs section respectively toggles 
visibility of the corresponding section.  
Below the track number the SoundMexPro output channel and input channel indices are shown (if 
any are mapped to the track, here only track 1 has an input mapped with command ‘iostatus’). 
Below the channel number the ASIO channel name of the corresponding input or output is shown. If 
the name is too long keep the mouse over the name to get a hint window with the full name. 
The small red LED above the level meter indicates that clipping has occurred on the corresponding 
channel. You can reset all LEDs by clicking one of them or with command ‘resetclipcount'. 
You can change volume with the keyboard (keys ‘Up, ‘Down’, ‘PageUp’ and ‘PageDown’). With the 
TAB key you can walk through the sliders. The slider that has the focus has a red line on its thumb 
(here: track 1). Sliders, which are currently not at position o dB have a green line on their thumb 
(here: track 2). You can toggle between 0 dB and last volume by a double click on the thumb or with 
the space bar. Note: shortcuts only work if the slider to apply the shortcuts two has the focus! 



 

SoundMexPro documentation   28 

 
Figure 8: The SoundMexPro Mixer 

 
A track or channel can be muted/unmuted by clicking button ‘M’ (or keyboard shortcut ‘M’). A red 
button indicates that mute is active (here: output 1). 
A track or channel can be switched to solo by clicking button ‘S’ (or keyboard shortcut ‘S’). A yellow 
button indicates that solo is active (here: tracks 0 and 1). NOTE: Solo supersedes mute! 

You can ‘link’ a track or channel to his left neighbour by clicking the link button  (or keyboard 
shortcut ‘L’). If channels are linked, volume, solo or mute changes are applied to all linked tracks or 
channels respectively. 
If you hold a shift key when clicking a mute or solo button, the corresponding action is performed 
‘exclusively’, e.g. the corresponding channel is muted and all others are unmuted. 
Important note: the current volume in dB is shown below the sliders. The slider range is limited from 
+6 dB to -90 dB (the switches to –inf). You may set e. g. higher volumes with the command 
‘trackvolume’ and the correct value will be shown below the slider. But if the slider is moved 
afterwards, the volume will switch into the slider range again. 
The status bar contains information about the device status, number of xruns and current and 
maximum used DSP time in percent (DSP: CURRENT/MAXIMUM). 

7.2 The SoundMexPro ‘TrackView’ 
Since version 1.1.0.3 SoundMexPro supports a so called ‘TrackView’ (commands ‘showtracks’ and 
‘updatetracks’). It shows a simple visualization of all tracks with their loaded files and vectors/arrays. 
An example view with four tracks (from tutorial 04b) is shown in Figure 9.  
The wavedata are only plotted if the optional parameter ‘wavedata’ of the commands is set to ‘1’ 
(default). This may take a while… Hit Esc to cancel the visualization. Use ‘View’ -> ‘Refresh’ from the 
main menu to recalculate the wave data. 
A time scale is shown at the top. You can switch the scale so use a sample scale or a time scale with 
the context menu (right mouse click on the scale) or with the main menu (‘View’ -> ‘Display Format’. 
The current cursor position is shown at the left bottom of the screen (left of the horizontal scrollbar). 



 

SoundMexPro documentation   29 

You can zoom vertically and horizontally with the zoom-buttons (magnifying glasses) next to the 
corresponding scrollbars (the magnifying glass without ‘+’ or ‘-’ in it zooms out to show all tracks or 
samples respectively). 
The tracks are arranged horizontally. The dark blue box to the left of each track shows track number, 
device output channel where the track is connected to, and a list of input channels that are mixed 
(added) to this track (if any).  

 
Figure 9: The SoundMexPro TrackView 

Data that were loaded to a track are shown as green (files) and blue (vectors) boxes. Please note, 
that names of vectors can only be shown if the optional argument ‘name’ is specified in command 
‘loadmem’. Vertical dotted lines indicate loops of a file/vector (e.g. the vector ‘sweep’ in the figure is 
played three times). Vertical dotted lines connected with a cross indicate a crossfade (e.g. 
‘eurovision.wav’ loaded to Track 3). During playback a vertical cursor shows the current playback 
position. You can set the current position by clicking with the right mouse button at the desired 
position while holding the Ctrl-Key pressed. 
The status bar contains information about the device status, number of xruns and current and 
maximum used DSP time in percent (DSP: CURRENT/MAXIMUM). 
This TrackView is very useful when developing new scripts/experiments/measurement paradigms: In 
this view you may check, that all data are loaded as expected to the tracks, (especially when you are 
using multiple/mixing tracks) and that the final setup is as expected. 

  



 

SoundMexPro documentation   30 

8 SoundMexPro Realtime DSP-Plugins 
SoundMexPro supports realtime block by block signal processing with two types of plugins.  
Processing can be implemented either with MATLAB®  or GNU Octave scripts or as high-performance 
VST plugins (Steinberg “Virtual Studio Technology“) for more costly calculations and time-critical 
applications.  

8.1 Realtime processing with MATLAB® or GNU Octave scripts  
NOTE: script based plugins are not available for Python. 
SoundMexPro supports the MATLAB® or GNU Octave script based implementation of user defined 
signal processing in realtime (i.e. during playback and recording). For this purpose a user defined 
MATLAB® script containing a processing function is called for each data block. The samples of all 
input and output channels are passed to the script before passed to the driver or directly after 
receiving them from the driver respectively. The script may manipulate those data before returning 
them as output arguments of the function back to SoundMexPro. Important note: manipulations of 
the input (record) data are not recorded to disk, but the input data may be used to copy/apply them 
to output data (e.g. for direct i/o). For the signal processing task a separate MATLAB® or GNU Octave 
process is started to avoid interference between signal processing and other parts of the main task.   
The script MATLAB® script DSP interface of SoundMexPro is initialized and configured with multiple 
options of the command ‘init’ (see also chapter 13.1). The corresponding options are explained here 
in more detail: 
 

Option Description 
pluginstart Name of a MATLAB® script to be called on after startup of the separate 

processing MATLAB® process. This script is intended for initial (time consuming) 
setup of the user defined signal processing scheme. Here you may as well read 
from the ‘main’ (calling) MATLAB® instance, e.g. by reading a MAT-file that the 
main instance wrote prior to ‘init’. The called script must implement a function 
taking three input arguments and returning one value (success flag), e.g. 
function retval = plugin_start(inchannels, outchannels, samples) 

The passed arguments are 
inchannels:   The number of input channels to be expected in calls to the  
      processing script 
outchannels:   The number of output channels to be expected in calls to the 
      processing script 
samples:   The number of samples per channel to be expected in calls to 
      the processing script 
These values may be useful e.g. to create some ‘memory’ for a filter with the 
correct size. 
Important note: this script must be in the search path of MATLAB® to enable 
the separate processing MATLAB® process to find it! 

pluginproc Name of a MATLAB® script to be called for each data (audio) block. The called 
script must implement a function taking four input arguments and returning four 
matrices of same size, e.g. 
function [proc_indata, proc_outdata, proc_inuserdata, proc_outuserdata] = 
... 

            plugin_proc_script(indata, outdata, inuserdata, outuserdata) 

The passed arguments are 
indata:   Matrix with ‘inchannels’ columns and ‘samples’ rows containing 
     the currently recorded samples (as passed in pluginstart) 
outdata:   Matrix with ‘outchannels’ columns and ‘samples’ rows containing 



 

SoundMexPro documentation   31 

     the current samples to be passed to the driver next 
inuserdata:  Matrix with ‘inchannels’ columns and 100 rows containing user 
      data for inter-process-communication between ‘main’ 
MATLAB®      and processing MATLAB® instance (see below) 
outuserdata:  Matrix with ‘outchannels’ columns and 100 rows containing user 
     data for inter-process-communication between ‘main’ MATLAB® 
     and processing MATLAB® instance (see below) 
The function must return four matrices of identical size.  
NOTE: take care that the resulting samples after processing are between -1 and 1, 
otherwise clipping will occur (except if channel volume was set with command 
‘volume’: this volume is applied after calling the plugin)! 
NOTE: take care that your processing is not too slow (i.e. consumes more time 
than samples/samplerate), otherwise xruns (dropouts) will occur! Use the 
command ‘xrun’ to detect dropouts. 
Important note: this script must be in the search path of MATLAB® to enable 
the separate processing MATLAB® process to find it! 

pluginshow Debugging flag. If set to 1 the separate processing MATLAB® instance window is 
shown. This is useful to debug your startup or processing script, because all errors 
occur in those scripts will be shown in that workspace! If set to 0 (default) the 
window stays invisible. Note: during the runtime of SoundMexPro the processing 
MATLAB® instance window is blocked (you cannot access it, move it, scroll it), you 
have to call ‘exit’ to unblock it. Use only for debugging purposes. 

pluginkill Debugging flag. If set to 0 the separate processing MATLAB® instance is not 
terminated on ‘exit’ of SoundMexPro. This is useful for accessing the window to 
check errors (see also ‘pluginshow’). If set to 1 (default) the processing MATLAB® 
instance is terminated on ‘exit’. Use only for debugging purposes.  
Note: if ‘pluginkill’ and ‘pluginshow’ set to 0, the process will run invisible forever! 
You can only kill it with the task manager! 

plugintimeout A timeout in milliseconds for startup of the plugin. This includes startup of the 
processing MATLAB® instance and processing of the startup script specified in 
‘pluginstart’. Default value is 10000 (10s). Must be increased if startup script is 
lengthy. 

pluginforcejvm 

 
If this parameter is set to 1 the separate processing MATLAB® instance is started 
with Java Virtual Machine (JVM). It is highly recommended NOT to use this flag, 
since the JVM lowers the performance of plugins significantly. Additionally you 
may have to increase the value of the parameter 'plugintimeout' because the 
MATLAB startup might be very slow. This parameter is ignored for Octave. 

 
Important note: due to performance reasons the separate processing MATLAB® instance is started 
without the Java Virtual Machine by default. In this case no GUI commands (e.g. figures) are 
supported/allowed in plugin scripts. If GUI commands are needed please refer to the parameter 
‘pluginforcejvm’ above. 
During the runtime the main MATLAB® instance that runs SoundMexPro can exchange data with the 
processing MATLAB® instance using the commands ‘pluginsetdata’ and ‘plugingetdata’. The 
command ‘pluginsetdata’ writes new user data that are passed to the processing script (see above), 
and the command ‘plugingetdata’ retrieves the current user data, so that a bidirectional 
communication can be established. NOTE: a change in the user data may not be applied immediately, 
it may take a few buffers calls until they ‘reach’ the processing script! 



 

SoundMexPro documentation   32 

For an example please refer to the tutorials ‘t_07_realtime_plugin.m’ and the scripts used by the 
example ‘t_07a_x_plugin_start.m’ and ‘t_07a_x_plugin_proc’. This tutorial shows a running example 
and an example where processing is too slow as well. 
More fully functional examples are located in the examples subdirectory. 
SoundMexPro is shipped with additional helper scripts for manipulations in the frequency domain. 
They implement a block-by-block overlapped add FFT filter with zero padding (stft) in the two helper 
scripts smp_stftinit.m and smp_stft.m located in the BIN subdirectory. The usage is demonstrated in 
the tutorial script t_07b_realtime_plugin_spec.m and some helper scripts. 
Realtime processing with MATLAB® scripts is available only with the DSP and DSP-VST versions of 
SoundMexPro.  

8.1.1 Using compiled script plugins  
If you want to use signal processing with MATLAB® scripts that were compiled with MATLAB® into 
executables, you have to do some adjustments and compile the plugins separately. An example with 
detailed descriptions can be found in the examples subdirectory of the installation. Instructions and 
detailed descriptions how to compile and debug such applications are contained in the scripts 
‘MainScript.m’ and mainly in ‘SMPPlugin.m’ in the BIN-directory of the SoundMexPro installation. 
The script ‘SMPPlugin.m’ ist intended to be used for all you compiled script plugins, only the 
compiling command line has to be adjusted (see comments in file). 

8.2 Realtime processing with VST-plugins  
SoundMexPro supports loading of Steinberg “Virtual Studio Technology“ (VST) plugins. VST is a 
widespread audio plugin architecture worldwide and therefore thousands of plugins exist – many of 
them are freeware. Thus you can either benefit from the variety of existing VST plugins or develop 
your own plugins using the free VST-DSK available from Steinberg (http://www.steinberg.com). 
This chapter describes how to use VST-plugins in SoundMexPro. SoundMexPro is shipped with a 
growing number of VST plugins. These plugins are described in the separate manual HtVst-
Plugins.pdf.  

8.2.1 I/O-configuration of VST-plugins 
In general a VST-plugin is a signal processing unit with a variable number of inputs and outputs. A 
plugin reads data from the inputs, applies its processing scheme on the data and writes the 
processed data to the outputs.  
For the description of the I/O-configuration of VST-plugins – the so called ‘routing’ – it is very 
important to realize the difference between the plugins’ inputs and outputs and the SoundMexPro 
channels (tracks or output channels respectively) that are connected to those inputs and outputs of 
the plugin.  
SoundMexPro supports three different ‘types’ of VST-plugins. The type determines if a VST-plugin is 
loaded as a ‘master’ plugin, as a ‘track’ plugin or as a ‘recording’ plugin. ‘Master’ plugins run on 
device output channels (i.e. after mixing down tracks to device channels), whereas ‘track’ plugins 
apply processing to virtual output tracks. ‘Recording’ plugins (type ‘input’) are processing the 
recorded data. Figure 2 in chapter 4.3 shows the different types in the SoundMexPro processing 
scheme. Note: you can connect only identical types of SoundMexPro channel to a plugin of a 
particular type! A track plugin for example always reads from SoundMexPro tracks and writes the 
processed data to SoundMexPro tracks: cross-linking is not possible with VST plugins. You have to 
use the commands ‘trackmap’ and ‘iostatus’ to change the routing within SoundMexPro.  
To avoid ambiguous names, the following definitions are used in this paragraph: 

- input:  input channel of the plugin 
- output: output channel of the plugin 



 

SoundMexPro documentation   33 

- SoundMexPro channel: a SoundMexPro output channel, input channel or track. The 
descriptions below are identical all types of VST plugins in SoundMexPro, therefore we 
always use “SoundMexPro channel”. 

A VST-plugin is loaded using the command ‘vstload’. The parameters of the command define the I/O-
configuration (the ‘routing’) of the plugin: 

- parameter ‘type’:  specifies how to use the plugin: as ‘master’, ‘track’ or ‘input’ plugin 
- parameter ‘input’: specifies which SoundMexPro channels to be connected to the plugins 

inputs 
- parameter ‘output’: specifies which SoundMexPro channels to be connected to the plugins 

outputs 
- parameter ‘position’: specifies the vertical position of the plugin (see below) 

Figure 10 shows a sample routing of a VST-Plugin. We assume that this (dummy) “Channel-Gain” 
plugin has two inputs and two outputs. The processing scheme of this plugin simply applies a gain to 
the data. 

 
Figure 10: Sample for the I/O-configuration (routing) of one VST-Plugin 

The I/O-configuration in the ‘vstload’ command for this example would be 
 
 

soundmexpro('vstload', ...                % command name 

            'filename', 'plugin.dll', ... % filename of plugin binary 

            'type', 'track', ...       % plugin type, here: track plugin 

            'input', [0 3], ...           % tracks to read data from 

            'output', [1 2] ...           % tracks to write processed data to 

 ); 

 

 
 

soundmexpro('vstload',                   # command name 

            { 

              'filename' : 'plugin.dll',  # filename of plugin binary 

              'type' : 'track',        # plugin type, here: track plugin 

              'input' : [0, 3],           # tracks to read data from 

              'output' : [1, 2]           # tracks to write processed data to 

      } 

) 

 

 
The next example uses different tracks for the inputs and outputs. The example uses a total of four 
tracks. The routing of the ‘vstload’ command will result in a ‘complete processing scheme’ within the 

Plugin “HtVSTGain” 

Plugin- 

Outputs 
Plugin- 

Inputs 

SoundMexPro channel  0 

SoundMexPro channel  3 SoundMexPro channel  2 

SoundMexPro channel  1 



 

SoundMexPro documentation   34 

SoundMexPro tracks as shown in Figure 11 (NOTE: in the following the signal flow is always from top 
to bottom): 

 

 
Figure 11: Example for signal flow in SoundMexPro with VST-Plugin 

This example is implemented in the tutorial script ‘t_09a_vst_simple.m’ using different sine signals 
loaded to the different tracks.  
SoundMexPro can load multiple VST-plugins for subsequent processing. Up to five plugins can be 
loaded to each channel; the argument ‘position’ specifies the so called ‘vertical’ position/layer of a 
plugin denoting its position within this subsequent processing chain. The audio data are passed first 
to the plugin at position 0, the output of plugin 0 is passed to plugin at position 1 and so on as 
demonstrated in Figure 12. For simplicity reason the figure shows only two SoundMexPro channels 
and VST-plugins with one channel each using ‘straight’ routing (i.e. inputs and outputs of the plugins 
are always identical). For a more ‘sophisticated’ example please take a look at the tutorial file 
‘t_09b_vst_artificial.m’ that uses multiple plugins in multiple vertical layers with ‘cross-routing’ 
from/to different tracks applying simple gains to some artificial data for illustrating the usage of 
routing with plugins. 

Track 0 

Plugin  

Track 1 Track 2 Track 3 



 

SoundMexPro documentation   35 

 

 
Figure 12: Vertical positions of VST-plugins in SoundMexPro 

Additionally a VST plugin can be configured to use a copy of data from a different channel and 
position within this data flow as it’s input rather than the subsequent audio data within a channel. 
This may be used for a recursion e.g. to implement adaptive filters. Figure 13 shows a simple 
example for recursion within one channel.  

 
Figure 13: Recursion within VST-plugins in SoundMexPro 

 

SoundMexPro 

channel 0 

Adaptive 
Filter Plugin Position 0 

Position 1 
Other Plugin 

SoundMexPro channel 0 SoundMexPro channel 1 

Plugin 1 
Position 0 

Position 1 

Position 2 

Position 3 

Position 4 

Plugin 3 

Plugin 5 

Plugin 7 

Plugin 9 

Plugin 2 

Plugin 4 

Plugin 6 

Plugin 8 

Plugin 10 



 

SoundMexPro documentation   36 

The configuration for these two plugins would be 
 
 

soundmexpro('vstload', ...                 % command name 

            'filename', adaptive.dll', ... % filename of plugin binary 

            'type', 'track', ...       % plugin type, here: track plugin 

            'input', [0 -1], ...          % tracks to read data from 

            'recursechannel', [0], ...    % recursion source channel 

            'recursepos',     [1], ...    % recursion source position 

            'output', [0] ...             % tracks to write processed data to 

 ); 

 

soundmexpro('vstload', ...                 % command name 

            'filename', other.dll', ...   % filename of plugin binary 

            'type', 'track', ...       % plugin type, here: track plugin 

            'input', [0], ...             % tracks to read data from 

            'output', [0] ...             % tracks to write processed data to 

 ); 

 
 

soundmexpro('vstload',                   # command name 

            { 

              'filename' : 'adaptive.dll',# filename of plugin binary 

              'type' : 'track',        # plugin type, here: track plugin 

              'input' : [0, -1],           # tracks to read data from 

              'recursechannel' : [0],     # recursion source channel 

              'recursepos' :     [1],     # recursion source position 

              'output' : [0]            # tracks to write processed data to 

      } 

) 

 

soundmexpro('vstload',                   # command name 

            { 

              'filename' : 'other.dll',  # filename of plugin binary 

              'type' : 'track',        # plugin type, here: track plugin 

              'input' : [0],            # tracks to read data from 

              'output' : [0]            # tracks to write processed data to 

      } 

) 

 

Two ‘inputs’ are defined: the first uses channel ‘0’ i.e. regular audio data from SoundMexPro channel 
0. The second is configured for recursion (input -1). The parameters ‘recursechannel’ and 
‘recursepos’ define the ‘source for this channel: it is channel 0 (within the plugins data flow) and 
position 1, i.e. SoundMexPro channel 0 AFTER processing within the second vertical plugin position 
(position 1) and thus the output of the second plugin in this example. Important note: usually such 
‘recursions’ are used for recursive filters, i.e. a plugin needs data from ‘later processing steps’ e.g. to 
realize an adaptive filter (as in this example). Thus, if the data source (recursepos) of a plugin is 
located BEHIND the plugin itself, then the plugin will always receive the data from the last processing 
block: in the first call to the processing it will contain zeroes, in the second it will contain the output 
of the second plugin from the first call and so on.  
NOTE: this type of recursive wiring usually needs plugins that ‘know’ or ‘need’ recursive data 
respectively. Please check example 09d, where an ‘artificial’ usage of recursion is demonstrated using 
the simple gain plugin shipped with SoundMexPro 



 

SoundMexPro documentation   37 

After loading and configuring multiple plugins, SoundMexPro processes the data with the following 
processing scheme:  

- If fewer inputs are specified than available for a particular plugin, SoundMexPro passes zeros 
in the unused channel(s) to the plugin.  

- If fewer outputs are specified than available for a particular plugin, SoundMexPro ignores the 
output from unused channel(s) of the plugin.  

- All plugins within one vertical position receive the identical input data.  
- If a plugin’s input(s) are configured for recursion the corresponding data are copied to the 

plugin’s input(s) 
- If a channel is used in any plugin of a vertical position (layer), then the original input data are 

cleared, after processing all plugins of a layer this channel will contain only processed data. 
- If a channel is not used in any plugin then the original input data are preserved. If the same 

channel is used as output for another plugin, then this channel will contain a sum of the 
original channel data and the processed output data of the plugin 

Each plugin within one ‘horizontal’ position is processed in a separate thread to benefit from the 
calculating power of multiple processors. This means that input data are passed to all plugins of one 
layer (e.g. position 0: plugins 1 and 2). Then the processing is performed independently in different 
threads. The data are synchronized again after each layer, i.e. SoundMexPro has to wait until all 
plugins of one layer have completed their processing to keep the time line consistent before passing 
the data processed by first-layer plugins to the next layer (and so on). To disable multi-threading 
within the VST host, use the ‘vstmultithreading’ parameter of command ‘init’. 
A VST-plugin can have different ‘programs’ and ‘parameters’ that may be changed on runtime. A 
‘program’ can be selected by name, a value of a ‘parameter’ can be set by name as well, valid values 
are between 0 and 1 (the plugin may convert this value internally and may show such converted 
values on its editor, but setting is only allowed within this range!). These programs and parameters 
are specific for each plugin: SoundMexPro simply passes the values from and to the plugin. To 
retrieve all available information about a VST-plugin including parameters and programs use the 
command ‘vstquery’. 
 

8.2.2 VST-plugin configuration files  
The commands ‘vstset’ and ‘vststore’ can be used to store or load settings for a VST-plugin from a 
configuration file; the command ‘vstload’ optionally can use configuration files as well. The format of 
configuration files is the standard Windows® ini-file file format (NOTE: no spaces allowed!!) with the 
following sections, fields and values: 
 
[Settings] This section contains fields used for the I/O-configuration (only used by ‘vstload’). The 

names of the fields and their meaning are identical to the command line arguments of 
command ‘vstload’. Multiple inputs and outputs must be specified as comma 
separated list. NOTE: command line arguments supersede configuration file entries 

[Program] This section may contain two fields: 
- ‘program’. If it is specified, the current program of the plugin is set to the 

value of this field. This field internally calls the SoundMexPro command 
‘vstprogram’, please refer to the command reference below for details. 

- ‘programname’. If it is specified, the name of the current program of the 
plugin is set to the value of this field. NOTE: this command does not select a 
program, but renames it. This field internally calls the SoundMexPro 
command ‘vstprogramname’, please refer to the command reference below 
for details. 

[Parameter] This section may contain parameter names of the plugin as fields. All values must be 



 

SoundMexPro documentation   38 

between 0.0 and 1.0. All contained parameters are set to the specified values 
 
Example file: 
 
[Settings] 

filename=..\bin\HtVSTGain.dll 

type=master 

input=0,1 

output=2,3 

position=1 

 

[Program] 

program=lin 

programname=myname 

 

[Parameter] 

gain_0=0.1 

gain_1=0.3 

  
The command ‘vststore’ stores all available values to a configuration file. 
 

8.2.3 VST-plugin editor 
The command ‘vstedit’ shows a GUI editor for changing parameter values and programs on runtime.  

 
Figure 14: VST GUI editor 

If the plugin contains a user defined editor this will be shown, otherwise a native parameter editor as 
shown in Figure 14 will appear. Click on the ‘sliders’ (blue/grey respectively) at the right of each 
parameter line and move the mouse to change a value.  
 

9 ASIO Direct Monitoring (ADM) 
With version 2 of the ASIO interface Steinberg introduced the so called “ASIO Direct Monitoring” 
(ADM). ADM is intended to monitor one or more inputs on one or more output channels with ultra 
low latency by ‘copying’ the input data directly to the output within the soundcard buffers itself. This 
guarantees minimum latency, but this mode does not pass the data to any ASIO application (such as 
SoundMexPro) at all. Therefore you cannot mix or process recorded data before they are passed to 
the outputs in ADM mode. 
The SoundMexPro command ‘adm’ interfaces directly to ASIO ADM. Please check the help for the 
command for details. 
Originally ADM was intended to map multiple inputs to a pair of channels (stereo). Gain and pan 
where intended to be applied to the input channels only. However, some hardware manufacturers 
have ‘extended’ the functionality to set output gain/pan as well or to map single inputs to multiple 



 

SoundMexPro documentation   39 

outputs. These features are not part of the ADM specification and therefore they may not work with 
every soundcard.  
NOTE: The parameters to be used with the ‘adm’ command of SoundMexPro are identical to the 
original ASIO parameters of the ASIO-SDK from Steinberg (where ‘mode’ corresponds to the ‘state’ 
flag in the SDK). Thus you have full and direct access to the API of ADM. However, as stated above: 
which undocumented parameters are supported by a particular soundcard, or which features are 
supported at all are part of the soundcard drivers and cannot be changed or extended by 
SoundMexPro. 

9.1 Extensions/hints for particular sound cards 

9.1.1 Mapping inputs to multiple outputs 
Most soundcard drivers are using ADM switches as ‘radio buttons’, i.e. if an input channel is mapped 
to (‘monitored by’) a particular output channel, and in a subsequent call the same input is mapped to 
another output channel, then the mapping to the first channel is disabled (e.g. MOTU soundcards). 
Some soundcards keep the mappings between calls to allow mapping one input to multiple outputs. 
Most RME soundcards support this behaviour, at least the RME FireFace and the RME HDSP-Series. 

9.1.2 Output gain/pan control 
The RME FireFace and the RME HDSP-Series support setting of output gain and pan instead of input 
gain/pan. To set gain/pan for an output channel the ‘mode’ of the ‘adm’ command of SoundMexPro 
has to be set to the undocumented values ‘2’ or ‘3’ respectively. In this case the value of ‘input’ is 
ignored. When setting ‘mode’ to 2, ‘pan’ is set, but channel is muted (‘gain’ set to ‘0’).  When setting 
‘mode’ to 3, ‘pan’ and ‘gain’ of the output channel are set to the requested values. 

9.1.3 ADM mixer feedback 
When using ADM commands RME FireFace and the RME HDSP-Series, the changes are reflected 
directly on the FireFace mixer or Hammerfall mixer respectively, e.g. the slider positions will change. 
When using MOTU soundcards the changes are done ‘under the hood’ i.e. CueMix does not show the 
changed values. 

10 MIDI 
SoundMexPro offers a very limited and rudimental interface to send MIDI messages to a device. The 
related commands ‘midiinit’, ‘midiexit’, ‘midigetdrivers’, ‘midishortmsg’ and ‘midiplaynote’ or mainly 
intended to allow to interface to other software that is able to listen to MIDI messages. This way 
SoundMexPro might be used as ‘remote control’ for such software (e.g. TotalMix mixer interface of 
some RME soundcards).  
In order to establish such a connection usually a physical or virtual loopback cable is needed: 
SoundMexPro will send messages to the output of a MIDI device: this output has to be connected to 
the input of the MIDI device, where the corresponding software is listening.  An example for such a 
virtual software cable is LoopBe1 (http://nerds.de/en/loopbe1.html).  
After establishing this connection and configuring the software receiving the commands correctly, 
you may send messages to the software.  
For details how to use ‘midishortmsg’ you have to become acquainted with MIDI messages in 
general. Pease refer to standard MIDI documentations for details. 
The command ‘midiplaynote’ is just a simple wrapper for two subsequent ‘midishortmsg’ commands 
sending ‘note on’ and ‘note off’ for the corresponding note, velocity and channel after another. 



 

SoundMexPro documentation   40 

11 File-to-file operation with SoundMexPro 
SoundMexPro can be initialized in a so called ‘file-to-file-mode’ (see command ‘init’). In this mode no 
soundcard (or driver respectively) is used, all data are processed as fast as possible and the output 
data that are usually passed to the soundcard driver are written to audio files (one 32-bit float WAV-
file per output channel).  
Using file-to-file operation is useful (only), if you want to run (own) plugins (VST or MATLAB-script-
plugins) that are too slow for real-time operation. If such 'slow' plugins are used with regular 
soundcard operation, xruns (dropouts) would occur, because regular operation is hardware driven 
(i.e. the soundcard driver calls SoundMexPro when it needs data). If you (only) want to store the 
output data (i.e. the audio data passed to the output channels) in regular mode then you should use 
the command 'debugsave' rather than using file-to-file operation! 
In ‘file-to-file-mode’ you can use all SoundMexPro commands (except ‘debugsave’) to set up you 
desired scenario (configure multilple virtual tracks, load files and vectors/arrays, load VST plugins or 
use the MATLAB® script plugin). You can set the output filenames with command ‘f2ffilename’.  
Afterwards simply call the ‘start’ command (note: the parameters of ‘start’ are ignored in file-to-file-
mode). Here the main difference between regular operation and ‘file-to-file-mode’ applies:  

- in regular operation the ‘start’ command returns immediately and you can do asynchronous 
work in MATLAB® (check many of the tutorials) 

- in ‘file-to-file-mode’ SoundMexPro will process all data and the ‘start’ command will return 
after processing is complete. Depending on your 'loadfile' and 'loadmem' calls this may take 
a while! Afterwards the command 'cleardata' is called automatically 

See tutorial ‘t_11a_file2file.m’ for an example. 

12 SoundMexPro Versions 
Starting with version 2.9.0.0 SoundMexPro is freeware. The freeware supports all available 
commands. 
  



 

SoundMexPro documentation   41 

 

13 SoundMexPro Command Reference 
The tables below show a list of all available commands sorted by functionality. The following 
abbreviations are used in the column ‘Description’: 
 

 
 Name>  Name of the command 
 Help>  Help text 

 Par.>  Parameter list 

 Def.>  Default values of Par.> 

 Ret.>  Return values. The return values are described on separate lines, 
       where each value is returned as separate outarg or dictionary entry   
   respectively! 

 

 
In column ‘Tut.’ (Tutorial) you can find the tutorial number, where the corresponding command or 
special features/parameters of the command are introduced. The number in that column is part of 
the filename. For example the number ‘04a’ corresponds to the file ‘t_04a_play_wait.m’ or 
‘t_04a_play_wait.py’ respectively in the ‘tutorial(py)’ subdirectory.  
 

13.1 General Commands 
This table contains general commands (e.g. online help, initialization) 

Command Description Tut. 
help Name> help 

Help> prints help on command or command list 

Par.> help:   name of command of interest. 

              NOTE: wenn calling help from from MATLAB the name of the 

              parameter 'help' must be omitted, but when calling it from 

              SoundDllLoader it has to be used. 

01 

helpa Name> helpa 

Help> prints help on command or command list printed in logical/alphabetical order 

Par.> help:   name of command of interest. 

              NOTE: wenn calling help from from MATLAB the name of the 

              parameter 'help' must be omitted, but when calling it from 

              SoundDllLoader it has to be used. 

- 

about Name> about 

Help> Shows an about box with information about SoundMexPro 

- 

setdrivermodel Name> setdrivermodel 

Help> sets driver model. Command 'init' must not called before! 

      Driver model 'wdm' is only available for Windows Vista or later. 

      NOTE: it is STRONGLY recommended NOT to use the 'wdm'-mode!!! 

      Try to use tools like ASIO4All or Jack instead! 

      NOTE: in 'wdm'-mode only 2 output channels and no inputs are 

      supported. 'xrun' and 'controlpanel' are not supported with 'wdm'. 

      NOTE: calling 'exit' clears the driver model, thus you have 

      to call 'setdrivermodel' again after calling 'exit'! 

Par.> value:        'asio' or 'wdm' 

Def.> value:        'asio' 

- 

getdrivermodel Name> getdrivermodel 

Help> returns current driver model 

Ret.> value:        current driver model 

- 

init 

 

see also chapters 4.3 and  

Name> init 

Help> initializes module 

Par.> force:     if set to 1, 'exit' is called internally before init. 

01 

07 

11 



 

SoundMexPro documentation   42 

4.4.2       forcelic:  if set to 1, init forces a license to be used even, if it 

                 is currently locked by another computer. 

                 NOTE: if you pass this parameter, then you might force 

                 usage of a license that is currently used by another user! 

                 Without this parameter you are asked with a dialog if you 

                 want to take over the license and will have the choice... 

      driver:    name or index of ASIO driver to use 

                 NOTE: ignored for file2file-operation. 

      file2file: if set to '1' all final output channel data are written 

                 to files, no soundcard used at all. The default output file 

                 names are 'f2f_?.wav, where ? is the channel index To change 

                 filename see command 'f2fnames', to set buffersize to be used 

                 see 'f2fbufsize'. 

      f2fbufsize: buffersize to be used for file2file-operation. 

      reccompensatelatency: if set to '1' then the latency retrieved from the 

                 driver in samples is cutted from record files. 

                 NOTE: value '1' is ignored if a 'recdownsamplefactor' other 

                 than '1' is speccified! 

                 NOTE: this option uses the latency retrieved from the driver 

                 Itself. Depending in a particular driver this might lead to 

                 perfectly 'aligned' record files that contain exactly the played 

                 samples - or not! See also command 'getproperties' 

      filereadbufsize: buffer size used for wave file reading, If below 65536 

                 value is set to 65536. 

      samplerate: samplerate to use. NOTE: after intialization only this 

                 samplerate can be used, only files with this samplerate 

                 can be played! 

      output:    output channels to allocate (vector/array), or number of  

                 channels to use for file2file-operation (scalar value). 

                 NOTE: after initialization the allocated channels are 

                 enumerated starting with 0. If [1 2 4] is specified as 

                 output channels, you can access them in later commands 

                 only with indices 0, 1 or 2 respectively 

                 If -1 is specified, no output channels are used, if 'all' 

                 is specified all available output channels are used. 

      input:     input channels to allocate 

                 NOTE: after initialization the allocated channels are 

                 enumerated starting with 0. If [1 2 4] is specified as 

                 input channels, you can access them in later commands 

                 only with indices 0, 1 or 2 respectively 

                 If -1 is specified, no input channels are used, if 'all' 

                 is specified all available input channels are used 

                 NOTE: recorded data are always stored in normalized 

                 32-bit float PCM wave files. 

                 NOTE: never store record files directly on network drives 

                 or other slow drives! This may cause dropouts (xruns)! 

                 NOTE: ignored for file2file-operation. 

      track:     number of virtual output tracks to be used. Each output 

                 track is connected (mapped) to one output channels. This 

                 mapping can be changed with the command 'trackmap' (see 

                 also command 'trackmap' for a description how (multiple) 

                 track data are played on output channels). On 'init' 

                 the mapping is done 'circular', i.e. track 0 is mapped 

                 to channel 0, track 1 is mapped to channel 1 and so on. 

                 If more tracks than channels are specified, 'circular' 

                 means that mapping starts at channel 0 again. E.g.  

                 specifying [0, 1, 2] in output and 8 tracks leads to 

                 the following mapping: 

                        track0 -> channel0 

                        track1 -> channel1 

                        track2 -> channel2 

                        track3 -> channel0 

                        track4 -> channel1 

                        track5 -> channel2 

                        track6 -> channel0 

                        track7 -> channel1 



 

SoundMexPro documentation   43 

                 The current mapping can be retrieved with the command 

                 'trackmap'. On startup all tracks are in standard mode 

                 0 ('adding'), i.e. data samples are added up on the 

                 corresponding output channel .The mode of tracks can be 

                 changed with command 'trackmode'. 

      ramplen:   ramp length in samples applied when starting, stopping 

                 muting, unmuting, pausing, unpausing and setting master 

                 volumes (command 'volume'). 

      numbufs:   number of buffers (each size of current ASIO buffer size) 

                 used for software buffering. Increases I/O delay and 

                 delay for commands like 'volume' or 'pause' to be 

                 applied, but lowers risk of xruns to occur. 

                 NOTE: read the special section 'Buffer configuration in 

                 manual if you need low latencies! 

                 NOTE: ignored for file2file-operation. 

 recdownsamplefactor: factor n for downsampling recording data. All data saved 

                 to disk or retrieved by 'recgetdata' are sampled down by 

                 avaraging n samples and writing this sample 

 recfiledisable: disables recording to file completely. No files are created. 

 recprocesseddata: if set to 1, then harddisk recording is done AFTER the VST 

                 and MATLAB script plugin. Otherwise the raw data from driver 

                 are written to disk. 

  autocleardata: flag, if audio data (vectors or files), that are already 

                 played completely should be cleared from memory auto- 

                 matically on next data loading command. Set this to 0, if 

                 you want to use the 'playposition' command to "rewind" 

                 to a certain playback position with parameter 'position': 

                 audio data segements are kept loaded until 'stop' command 

                 If parameter is set to 1 (default is 0), all audio data 

                 segments that were already played completely are freed 

                 from memory on every 'loadfile' or 'loadmem' command. 

                 This is especially useful for online stimulus generation, 

                 where hundreds of new data segments are loaded during 

                 runtime! 

   starttimeout: timeout in milliseconds that is allowed between command 

                 'start' and the start of the driver. This is a debugging 

                 option for sound cards that respond very slow. 

    stoptimeout: timeout in milliseconds that is allowed between command 

                 'stop' and real stop of the driver. This is a debugging 

                 option for sound cards that do not really stop 

                 immediately after they are told to do so. 

 freezesamplerate: if this parameter s set to '1' then the real samplerate 

                 is not queried after start of the device any more and the 

                 stored samplerate BEFORE start is used. Intended for drivers 

                 that return an error when querying the samplerate on running 

                 devices 

    pluginexe:   executable for plugin. Leave this empty if running MATLAB 

                 or OCTAVE. Only to be set if using compiled plugins, see 

                 corresponding example 

                 NOTE: this parameter is not supported in Python 

    pluginstart: MATLAB script to be executed on startup of MATLAB script 

                 plugin 

                 NOTE: this parameter is not supported in Python 

    pluginproc:  MATLAB script to be executed for each audio buffer 

                 within MATLAB plugin. If this value is empty the MATLAB 

                 plugin interface stays disabled 

                 NOTE: this parameter is not supported in Python 

    pluginshow:  flag, if MATLAB process created for MATLAB plugin should 

                 be shown (0 or 1). NOTE: use only for debugging purposes! 

                 NOTE: for OCTAVE the workspace is only shown properly, if 

                 pluginkill is set to 0 as well! 

                 NOTE: this parameter is not supported in Python 

    pluginkill:  flag, if MATLAB process created for MATLAB plugin should 

                 be killed on 'exit' (0 or 1). While SoundMexPro is 

                 initialized you cannot access the MATLAB window that 

                 runs the plugin, so this parameter may be useful to keep 



 

SoundMexPro documentation   44 

                 the window alive after quitting SoundMexPro to check 

                 variables in plugin's workspace. NOTE: use only for 

                 debugging purposes! NOTE: if 'pluginshow' is set to 0 and 

                 'pluginkill' to 0, then you only can kill the processing 

                 MATLAB/OCTAVE instance with the task manager! 

                 NOTE: this parameter is not supported in Python 

  plugintimeout: timout in milliseconds for startup of the plugin. Set 

                 this value to higher values, if your startup script for 

                 the plugin takes some time. 

                 NOTE: this parameter is not supported in Python 

  pluginuserdatasize: size of user data per channel 

                 NOTE: this parameter is not supported in Python 

 pluginforcejvm: flag if the MATLAB instance running the plugin should be 

                 started with Java Virtual Machine (JVM). It is highly 

                 recommended NOT to use this flag, since the JVM lowers 

                 the performance of plugins significantly. Additionally 

                 you may have to increase the value of the parameter 

                 'plugintimeout' because the MATLAB startup might be very 

                 slow. This parameter is ignored for Octave. 

                 NOTE: this parameter is not supported in Python 

      logfile:   name of a file for command and return value logging. If 

                 it is set non-empty all commands and return values are 

                 written to this file (not in MATLAB but SoundDllMaster 

                 syntax). NOTE: if write access to file fails (read only 

                 of invalid filename) 'init' command will fail! 

 vstmultithreading: flag if each parallel VST plugin should run in a 

                 separate thread. 

 vstthreadpriority: thread priority for VST threads. Must be between 0 and 

                 3 (0: normal, 1: higher, 2: highest, 3: time critical). 

                 Setting value to 3 (time critical) will give highest 

                 priority to processing, but may block other processes. 

                 This value is ignored, if 'vstmultithreading' is 0. 

      quiet:     if set to 1, then no version info is printed to workspace. 

Def.> force:     empty 

      forcelic:  0 

      driver:    0 

      file2file: 0 

      reccompensatelatency: 0 

      filereadbufsize: 655360 

     f2fbufsize: 1024 

     samplerate: 44100 

      output:    [0 1] (first two channels) for regular operation, 

                 2 for file2file-operation. 

      input:     -1 (no recording at all!) 

      track:     one track for each allocated output channel 

      ramplen:   samplerate / 100 

      numbufs:   10 for ASIO driver model, 20 for WDM 

 recdownsamplefactor: 1 

 recfiledisable: 0 

 recprocesseddata: 0 

  autocleardata: 0 

   starttimeout: 6000 

    stoptimeout: 1000 

    pluginstart: empty 

    pluginproc:  empty (no plugin started) 

    pluginshow:  0 

    pluginkill:  1 

  plugintimeout: 10000 (10 seconds) 

 pluginuserdatasize: 100 

 pluginforcejvm: 0 

    logfile:     empty (no logging) 

 vstmultithreading: 1 

 vstthreadpriority: 2 

 quiet:             0 

Ret.> Type:      LicenceType 

initialized Name> initialized 01 



 

SoundMexPro documentation   45 

Help> determines if module is initialized 

Ret.> initialized:  1 if initialized, 0 else 

version Name> version 

Help> returns version string 

Ret.> Version:      version string 

01 

checkupdate Name> checkupdate 

Help> returns version string of the latest available version from website 

Ret.> Update:       1 if an update is available or else 

      Version:      version string of latest available version 

- 

license Name> license 

Help> returns current license information 

Ret.> Version:      current major revision number of SoundMexPro 

      Ed:           license type (edition) 

- 

show Name> show 

Help> shows mixer (identical to 'showmixer'). 

Par.> outputs:      if set to '0' output mixers are hidden on startup 

      tracks:       if set to '0' track mixers are hidden on startup 

      inputs:       if set to '0' input mixers are hidden on startup 

      topmost:      if set to '1' mixer window stays on top 

      foreground:   if set to 1 window is forced to the foreground 

Def.> outputs:      1 

      tracks:       1 

      inputs:       1 

      topmost:      0 

      foreground:   1 

01 

hide Name> hide 

Help> hides visualization of allocated channels 

01 

showtracks Name> showtracks 

Help> shows visualization of files/vectors in tracks. This 'view' is 

      especially intended to check the setup of your experiment/pardigm, 

      i.e. if everything is loaded/located as expected. During playback 

      a cursor shows the current position. 

      NOTE: command does call 'updatetracks' internally, so there is no 

      need to call 'updatetracks' directly after 'showtracks'. 

Par.> topmost:      if set to '1' track window stays on top 

      foreground:   if set to 1 window is forced to the foreground 

      wavedata:     if set to '1' waveforms are painted as well. 

                    NOTE: this might take quite a while... 

Def.> topmost:      0 

      foreground:   1 

      wavedata:     1 

04b 

hidetracks Name> hidetracks 

Help> hides visualization of files/vectors in tracks. 

04b 

updatetracks Name> updatetracks 

Help> updates visualization of files/vectors in tracks. NOTE: this  

      command must be called to have the loaded files and vectors 'up 

      to date'. It is recommended to call it directly before 'play'. 

Par.> wavedata:     if set to '1' waveforms are painted as well. 

                    NOTE: this might take quite a while... 

Def.> wavedata:     1 

04b 

showmixer Name> showmixer 

Help> shows mixer (identical to 'show'). 

Par.> outputs:      if set to '0' output mixers are hidden on startup 

      tracks:       if set to '0' track mixers are hidden on startup 

      inputs:       if set to '0' input mixers are hidden on startup 

      topmost:      if set to '1' mixer window stays on top 

      foreground:   if set to 1 window is forced to the foreground 

Def.> outputs:      1 

      tracks:       1 

      inputs:       1 

      topmost:      0 

      foreground:   1 

04b 

hidemixer Name> hidemixer 

Help> hides mixer. 

04b 

channelname Name> channelname none 



 

SoundMexPro documentation   46 

Help> sets symbolic name of one or more output channels and returns current 

      names. These names can be used in all commands using outputs instead 

      of their indices. 

Par.> output:    vector/array with output channels (indices or array with 

                 names, no duplicates allowed) 

      name:      vector/array with names to be set. Number of names must be 

                 identical to number of channels or must be empty. 

                 No duplicate names allowed. If empty, only current names 

                 are returned. 

Def.> output:    vector/array with all output channels 

      name:      empty 

Ret.> name:      vector/array with symbolic names of output channels 

trackname Name> trackname 

Help> sets symbolic name of one or more output tracks and returns current 

      names. These names can be used in all commands using tracks instead 

      of their indices. 

Par.> track:     vector/array with output tracks (indices or array with 

                 names, no duplicates allowed) 

      name:      vector/array with names to be set. Number of names must be 

                 identical to number of tracks or must be empty. 

                 No duplicate names allowed. If empty, only current names 

                 are returned. 

Def.> track:     vector/array with all tracks 

      name:      empty 

Ret.> name:      vector/array with symbolic names of output tracks 

02 

recname Name> recname 

Help> sets symbolic name of one or more input channels and returns current 

      names. These names can be used in all commands using inputs instead 

      of their indices. 

Par.> input:     vector/array with input channels (indices or array with 

                 names, no duplicates allowed) 

      name:      vector/array with names to be set. Number of names must be 

                 identical to number of channels or must be empty. 

                 No duplicate names allowed. If empty, only current names 

                 are returned. 

Def.> input:     vector/array with all input channels 

      name:      empty 

Ret.> name:      vector/array with symbolic names of input channels 

none 

exit Name> exit 

Help> de-initializes SoundMexPro 

01 

 
 

13.2 Device Commands 
This table contains commands related to ASIO devices (e.g. query for existing drivers and channels) 

Command Description Tut. 
getdrivers Name> getdrivers 

Help> returns names of all installed ASIO drivers 

Ret.> driver:    vector/array with ASIO driver names 

02 

getdriverstatus Name> getdriverstatus 

Help> returns status of all installed ASIO drivers 

Ret.> value:    vector/array  with ASIO driver status (1: ok, 0: error) 

02 

getchannels Name> getchannels 

Help> returns names of all channels of an ASIO driver 

      NOTE: if SoundMexPro is already initialized, the parameters are 

      ignored and the current driver is queried! 

Par.> driver:    name or index of ASIO driver to query 

Ret.> output:    vector/array  with names of output channels 

      input:     vector/array  with names of input channels 

02 

getactivedriver Name> getactivedriver 

Help> returns the name of the active ASIO driver 

Ret.> driver:    name of the ASIO driver used in command 'init' 

02 



 

SoundMexPro documentation   47 

getactivechannels Name> getactivechannels 

Help> returns the names of all channels of current driver that were 

      allocated in 'init' 

Ret.> output:    vector/array with names of allocated ouptut channels 

      input:     vector/array with names of allocated input channels 

02 

getproperties Name> getproperties 

Help> returns current samplerate and buffer size (samples) of current 

      driver, a list of supported samplerates and used sound format. 

      NOTE: before the device is running (i.e. 'start' was called) the 

      samplerate may differ from the sample rate that was specified in 

      command 'init': some drivers switch it not before device start. 

      If switching to specified sample rate is not successful in command 

      'start', it will fail with a corresponding error message. 

      NOTE: the list of supported samplerates may not be complete, it is 

      generated by 'asking' the driver if a particular samplerate is 

      supported. Some drivers return 'true' even if starting that 

      samplerate will fail (e.g. due to a samplerate lock by driver 

      settings dialog or external hardware). Some drivers may return 

      only one samplerate (the current one) even if others are 

      supported. The following samplerates are checked: 8000, 11025, 

      16000, 22050, 32000, 44100, 48000, 88200, 96000, 176400, 192000, 

      352800, 384000. 

Ret.> samplerate:   current samplerate 

      bufsize:      current ASIO buffersize on samples 

      samplerates:  vector/array with supported samplerates 

      soundformat:  description of currently used sound format of device 

      LatencyIn:    input latency as reveived from driver 

      LatencyOut:   output latency as reveived from driver 

      NOTE: the latencies will not include software buffering latency 

      and hardware delays, these are internal driver values as reported 

      by the driver itself! 

02 

controlpanel Name> controlpanel 

Help> shows 'own' control panel of an ASIO driver. 

      NOTE: if SoundMexPro is already initialized, no driver must be 

      specified, the current driver is called! 

      NOTE: command may raise an error for some drivers, if SoundMexPro 

      is already initialized! 

      NOTE: for some drivers this command may not return before the 

      control is closed again! 

Par.> driver:    name or index of ASIO driver 

Def.> driver:    0 

02 

 
 

13.3 Playback Commands 
This table contains commands related to audio output. 

Command Description Tut. 
trackmap 

 

see also chapters 4.3 

Name> trackmap 

Help> sets track mapping and returns current mapping 

Par.> track:     vector/array with track mapping. The vector/array must have 

                 an entry for every initialized track (see parameter 'track' 

                 of command 'init') specifying the output channel (indices 

                 or array with names), on which to playback the track 

                 data. Data are loaded to tracks with commands 'loadmem' 

                 and 'loadfile'. The data of all tracks are 'applied' to 

                 the data of the corresponding output channel, i.e. if 

                 more than one track is mapped to the same output the 

                 signals are added or multiplied and you may have to take 

                 care for clipping!  

Ret.> track:     vector/array with current track mapping 

01 

trackmode Name> trackmode 

Help> sets mode and returns current mode of tracks 

04b 



 

SoundMexPro documentation   48 

Par.> mode:      vector/array with mode values. If no value is specified, no 

                 volume is changed, current modes are returned. Either one 

                 mode must be specified (applied to all tracks) or lengths 

                 of mode vector/array and track vector/array must be identical 

                 (modes applied in corresponding order to specified tracks). 

                 Valid modes are: 

                    0  sample values of tracks are added to the output 

                       channel where they are mapped to, 

                    1  output channel data are multiplied with the track 

                       data. NOTE: the multiplication is _not_ done with 

                       the final, total data, but with the data processed 

                       (added) from tracks with a lower index. So if you 

                       want to apply a multiplication on the final channel 

                       output be sure, that you set the last track mapped 

                       to the corresponding channel to mode '1'! 

      track:     vector/array with tracks (indices or array with names) 

                 to apply mode to (no duplicates allowed) 

Def.> mode:      current modes (no changes) 

      track:     vector/array with all tracks 

Ret.> mode:      vector/array with current modes for all tracks 

start Name> start 

Help> starts input and output 

      IMPORTANT NOTE: record files are always overwritten! Use the  

      'recfilename' command to change the filenames if necessary. 

      NOTE: recorded data are always stored in normalized 32-bit float 

      PCM wave files. 

      NOTE: if you get an error 'setting samplerate of device to XY not 

      successful', check if the sample rate is locked by the driver (check 

      control panel and/or documentation of driver for more information). 

      IMPORTANT NOTE: if you are running in file2file-mode (see command 

      'init'), then the command 'start' will return after the file2file- 

      operation is complete. Depending on your 'loadfile' and 'loadmem' 

      calls this may take a while! Afterwards the command 'cleardata' is 

      called automatically. 

Par.> length:    'running' length. Values for 'length' may be: 

           < 0:  device is stopped (playback and record) after all tracks 

                 played their data. NOTE: After each ASIO buffer it is 

                 checked, if no track has more buffered data to play. If 

                 this is true the device is stopped. 

             0:  device is never stopped, zeros are played endlessly. In 

                 this case you may load new data to track(s) at any time. 

                 NOTE: if you record data to a file this runs forever as 

                 well and files may become quite huge! 

           > 0:  length in samples to play/record before device is stopped. 

                 NOTE: this length will not be sample accurate due to 

                 block processing. 

                 This parameter is ignored in file2file-mode. 

      pause:     if set to 1 device is paused rather than stopped 

                 This parameter is ignored in file2file-mode. 

Def.> length:    -1. If NO output channels are specified on init (i.e. -1) 

                 for 'output'), then default is 0. 

      pause:     0 

04a 

startthreshold Name> startthreshold 

Help> starts input and output after threshold value is exceeded in one or 

      more input channels 

      IMPORTANT NOTE: the command returns immediately to MATLAB, real start 

      of input and output waits for the threshold to be exceeced. If you 

      want to check, if threshold was exceeded meanwhile after calling  

      'startthreshold', use the command 'started': while waiting for 

      threshold it will return 0 in second return value, afterwards it will 

      return 1. This way you implement a waiting loop with timeout. After 

      the threshold is exceeded the playback starts immediately, but it will 

      start with 

                    numbufs * ASIO buffersize 

      zero samples (see parameter 'numbufs' of command 'init'). 

      IMPORTANT NOTE: record files are always overwritten! Use the  

04f 



 

SoundMexPro documentation   49 

      'recfilename' command to change the filenames if necessary. 

      NOTE: recorded data are always stored in normalized 32-bit float 

      PCM wave files. 

      NOTE: if you get an error 'setting samplerate of device to XY not 

      successful', check if the sample rate is locked by the driver (check 

      control panel and/or documentation of driver for more information). 

      NOTE: this command is not available in file2file-mode. 

Par.> value:     Threshold between 0 and 1, current value is returned. 

                 If no value is specified the current value is not changed. 

                 A value of 0 disables the threshold. Otherwise playback 

                 and recording starts with the next buffer after the 

                 threshold was exceeded (with respect to the specified 

                 value, mode and channels). 

                 NOTE: threshold is resetted after exceeding it (set to 0)! 

      mode:      Flag, if the threshold must be exceeded in one (1) or 

                 all (0) of the channels specified in 'channel'. Must 

                 be 0 or 1. 

      channel:   vector/array with input channels (indices or names) 

                 to check for the threshold (no duplicates allowed) 

      length:    'running' length. Values for 'length' may be: 

           < 0:  device is stopped (playback and record) after all tracks 

                 played their data. NOTE: After each ASIO buffer it is 

                 checked, if no track has more buffered data to play. If 

                 this is true the device is stopped. 

             0:  device is never stopped, zeros are played endlessly. In 

                 this case you may load new data to track(s) at any time. 

                 NOTE: if you record data to a file this runs forever as 

                 well and files may become quite huge! 

           > 0:  length in samples to play/record before device is stopped. 

                 NOTE: this length will not be sample accurate due to 

                 block processing. 

                 This parameter is ignored in file2file-mode. 

      pause:     if set to 1 device is paused rather than stopped. 

Def.> value:     current thresholds (no changes, 0 on startup) 

      mode:      1 

      channel:   vector/array with all allocated input channels 

      length:    -1. If NO output channels are specified on init (i.e. -1) 

                 for 'output'), then default is 0. 

      pause:     0 

Ret.> value:     current threshold value (between 0.0 and 1.0) 

      mode:      current threshold mode 

started Name> started 

Help> checks, if device was started (is still running) NOTE: this command 

      only checks if the ASIO device runs, it does not check, if data are 

      playing on any channel (see 'playing') 

Ret.> value:     1 if device is started, 0 else 

04a 

Stop Name> stop 

Help> stops device and clears loaded data 

04a 

 

pause Name> pause 

Help> sets pause status of device (playback  and record) and returns 

      current status. 

Par.> value:     1 (pauses device) or 0 (unpauses device) 

Def.> value:     current value (no change) 

Ret.> value:     1 if device is paused, 0 else 

04e 

mute Name> mute 

Help> sets mute status and returns current status. NOTE: this command 

      mutes all output channels globally using a ramp of length 'ramplen' 

      (argument of command 'init'). See also commands 'channelmute' and 

      'trackmute' and 'recmute'. 

Par.> value:     1 (mutes output) or 0 (unmutes output) 

Def.> value:     current value (no change) 

Ret.> value:     1 if device is muted, 0 else. 

04e 

trackmute Name> trackmute 

Help> sets mute status of one or more tracks and returns current status. 

      NOTE: muting/unmuting is not ramped! 

      NOTE: 'solo' status supersedes 'mute' status: if solo status of any 

04e 



 

SoundMexPro documentation   50 

      track is '1', then mute status of all tracks is ignored! 

Par.> value:     vector/array with mute values (0 for unmute or 1 for mute). 

                 If no value is specified, no mute values are changed, 

                 current values are returned. Either one value must be 

                 specified (applied to all tracks) or lengths of mute 

                 and track vector/array must be identical (values applied in 

                 corresponding order to specified tracks). 

      track:     vector/array with tracks (indices or array with names) 

                 to apply values (no duplicates allowed) 

Def.> value:     current mute values (no changes) 

      track:     vector/array with all tracks 

Ret.> value:     vector/array with current mute values for all tracks 

channelmute Name> channelmute 

Help> sets mute status of one or more output channels and returns current 

      status. NOTE: muting/unmuting is not ramped! 

      NOTE: 'solo' status supersedes 'mute' status: if solo status of any 

      output is '1', then mute status of all outputs is ignored! 

Par.> value:     vector/array with mute values (0 for unmute or 1 for mute). 

                 If no value is specified, no mute values are changed, 

                 current values are returned. Either one value must be 

                 specified (applied to all channels) or lengths of mute 

                 and output vector/array must be identical (values applied 

                 in corresponding order to specified channels). 

     output:     vector/array with output channels (indices or array with 

                 names) to apply values (no duplicates allowed) 

Def.> value:     current mute values (no changes) 

      output:    vector/array with all output channels 

Ret.> value:     vector/array with current mute values for all output channels 

none 

tracksolo Name> tracksolo 

Help> sets solo status of one or more tracks and returns current status. 

      NOTE: muting/unmuting is not ramped! 

      NOTE: 'solo' status supersedes 'mute' status: if solo status of any 

      track is '1', then mute status of all tracks is ignored! 

Par.> value:     vector/array with solo values (0 for unsolo or 1 for solo). 

                 If no value is specified, no solo values are changed, 

                 current values are returned. Either one value must be 

                 specified (applied to all tracks) or lengths of solo 

                 and track vector/array must be identical (values applied in 

                 corresponding order to specified tracks). 

      track:     vector/array with tracks (indices or array with names) to 

                 apply values (no duplicates allowed) 

Def.> value:     current solo values (no changes) 

      track:     vector/array with all tracks 

Ret.> value:     vector/array with current solo values for all tracks 

04e 

channelsolo Name> channelsolo 

Help> sets solo status of one or more output channels and returns current 

      status. NOTE: muting/unmuting is not ramped! 

      NOTE: 'solo' status supersedes 'mute' status: if solo status of any 

      output is '1', then mute status of all outputs is ignored! 

Par.> value:     vector/array with solo values (0 for unsolo or 1 for solo). 

                 If no value is specified, no solo values are changed, 

                 current values are returned. Either one value must be 

                 specified (applied to all channels) or lengths of solo 

                 and output vector/array must be identical (values applied 

                 in corresponding order to specified channels). 

     output:     vector/array with output channels (indices or array with 

                 names) to apply values (no duplicates allowed) 

Def.> value:     current solo values (no changes) 

     output:     vector/array with all output channels 

Ret.> value:     vector/array with current solo values for all output channels 

none 

loadmem 

 

see also chapter 0 

Name> loadmem 

Help> loads audio data to one or more channels 

      NOTE: while the device is running you may load more data to any track 

      at every time. However, if you load too many data segments (file or mem) 

      you may produce heavy memory load that may result in dropouts or even 

      crashes. Use the command 'trackload' to check, how many data segments 

04b 



 

SoundMexPro documentation   51 

      are currently pre-loaded to the tracks and adjust the 'speed' of loading 

      new data on-the-fly if necessary. On loading new data segments all data 

      that are played (not in use any more) are removed automatically. 

      Important not for Python: SoundMexPro expects the data for multi-channel 

      data arrays to be sorted non-interleaved in memory. Where MATLAB adjusts 

      the order in memory when transposing a matrix, this is NOT the case with  

      Python: transposing numpy ndarray only changes striping, the order 

      in memory stays unchanged. Especially when reading wave files to memory, 

      the channels will end up interleaved in memory! You may switch the order 

      in memory using the function 'numpy.asfortranarray' (see SoundMexPro 

      tutorials for examples). The same holds for arrays that are created 

      in code: be sure, that the memory order will be non-interleaved when 

      passing data to SoundMexPro! 

Par.> data:      matrix with one or more columns of data (mandatory). 

                 IMPORTANT NOTE: matrices with more than one channel are 

                 loaded 'aligned' to the specified tracks to keep the columns 

                 synchronous for playback, i.e. there may be zeros prepended 

                 to one or more columns if necessary! 

      track:     vector/array with tracks (indices or array with names), 

                 where data to be played (no duplicates allowed). The number 

                 of tracks must be a multiple of the number of data channels 

                 (columns of 'data'). If tracks devided by channels is > 1,  

                 the data are loaded circular to the specified tracks, e.g. 

                 loading a data matrix with two columns and specifying  

                 [0 1 4 7] in 'track', then the data columns are loaded as 

                 follows: 

                    column 0 -> track 0 

                    column 1 -> track 1 

                    column 0 -> track 4 

                    column 1 -> track 7, 

                 or loading a mono matrix with an empty 'track' argument 

                 will load that data to all tracks. 

      loopcount: number of times the data are to be played. NOTE: 0 is an 

                 endless loop! 

      offset:    number of zero samples to be played in the beginning 

    startoffset: number of samples to be skipped from data when playing the 

                 first loop. A value of -1 selects a random startoffset. 

      gain:      linear gain to be applied to each file sample. 

   crossfadelen: length in samples for a crossfade done with the object 

                 (vector or file) that was loaded BEFORE this object. 

                 If this object is set for the first vector in a track, 

                 it is ignored. 

      ramplen:   number of samples for fade in and fade out (hanning ramp) 

                 of 'complete' object, i.e. the first ramplen samples of 

                 playback are ramped up and the last ramplen samples 

                 (including all loops) are ramped down. 

                 NOTE: ramplen must not exceed half of total play length: 

                       ramplen <= loopcount*length - startoffset 

    loopramplen: number of samples for fade in and fade out (hanning ramp) 

                 looping of an object, i.e. the first ramplen samples of 

                 each loop are ramped up, and the last ramplen samples are 

                 ramped down. 

                 NOTE: the first samples of first loop are NOT ramped up 

                 and the last samples of last loop are NOT ramped down. Use 

                 parameter 'ramplen' additionally for an overall ramp! 

  loopcrossfade: if this value is set to 1 then a crossfade with a length of 

                 'loopramplen' samples is done on looping 

                 NOTE: this parameter is ignored if loopcount is 1 or 

                 loopramplen is 0 

                 IMPORTANT NOTE: this 'overlap' in crossfade mode changes the 

                 total playback length of your buffer to: 

                   (loopcount-1)*(length-loopramplen) + length 

      name:      optional name for the data object. Is used track view GUI 

                 to show names of used vectors. 

Def.> track:     vector/array with all tracks 

      loopcount: 1 



 

SoundMexPro documentation   52 

      offset:    0 

    startoffset: 0 

      gain:      1 

   crossfadelen: 0 

      ramplen:   0 

    loopramplen: 0 

  loopcrossfade: 0 

loadfile 

 

see also chapter 0 

Name> loadfile 

Help> loads an audio file to one or more tracks, supported formats see PDF 

      documentation. NOTE: while the device is running you may load more 

      data to any track at every time. However, if you load too many data 

      segments (file or memory) you may produce heavy memory load that may 

      result in dropouts or even crashes. Use the command 'trackload' to 

      check, how many datasegments are currently pre-loaded to the tracks 

      and adjust the 'speed' of loading new data on-the-fly if necessary. 

      On loading new data segments all data that are played (not in use 

      any more) are removed automatically. 

Par.> filename:  filename of the audio file to load (mandatory). 

                 NOTE: this command does not load the complete file to 

                 memory, therefore it should be used rather than 'loadmem' 

                 on huge files. But if files are small and to be played in 

                 loop it is recommended to use 'wavread' and 'loadmem' to 

                 play data, because it is much more efficient to read from 

                 memory than to read from file on the fly. 

                 IMPORTANT NOTE: the channels of multichannel audio files 

                 are loaded 'aligned' to the specified tracks, i.e. there 

                 may be zeros prepended to one or more channels if 

                 necessary! 

      track:     vector with tracks, (indices or cell array with names), were 

                 data to be played (no duplicates >= 0 allowed). The number 

                 of tracks must be a multiple of the number of channels of 

                 the wave file. If tracks devided by channels is > 1, the 

                 data are loaded circular to the specified tracks, e.g. 

                 loading a wave file with two channels and specifying 

                 [0 1 4 7] in 'track', then the file channels are loaded as 

                 follows: 

                    channel 0 -> track 0 

                    channel 1 -> track 1 

                    channel 0 -> track 4 

                    channel 1 -> track 7, 

                 or loading a mono file with an empty 'track' argument 

                 will load that data to all tracks. For a wave file 

                 channel, that should _not_ be played on any track specify 

                 a negative value. 

                 This value is ignored if 'output' in command 'init' was -1. 

      loopcount: number of times the data are to be played. NOTE: 0 is an 

                  endless loop 

      offset:    number of zero samples to be played in the beginning 

    startoffset: number of samples to be skipped from data when playing the 

                 first loop. A value of -1 selects a random startoffset. 

                 NOTE: the samples of the file to be used are determined 

                 by the parameters 'fileoffset' and 'filelength': 

                 'fileoffset' sets the number of samples to be skipped from 

                 the start of the file. This applies for all played loops, 

                 i.e. the first 'fileoffset' samples of the file are never 

                 played. 

                 'length' sets the total length in samples to be used for 

                 each loop (see also description below). 

                 The 'range' of the file to be used is generated from these 

                 parameters and the file is looped if necessary (i.e. if 

                 'fileoffset' + 'length' > (filesize in samples)). 

                 You can set the start playback sample for the first 

                 loop within this range (!) with the parameter 'startoffset'. 

                 Must be between -1 (random) and 'length'. 

     fileoffset: number of samples to skip in the beginning. An offset of 

                 -1 starts at a random position within the file. NOTE: this 

04a 



 

SoundMexPro documentation   53 

                 applies for all loops, first 'fileoffset' samples of the 

                 file will never be used, see description of 'startoffset'! 

      length:    length in samples to play per loop. Must be between 0 and 

                 length of the used 'range' of the file in samples (see also 

                 description of 'startoffset'). 0 uses all samples starting 

                 at 'fileoffset' to the end of the file. 

      gain:      linear gain to be applied to each file sample. 

   crossfadelen: length in samples for a crossfade done with the object 

                 (vector or file) that was loaded BEFORE this object. If 

                 this object is set for the first vector in a track, it is 

                 ignored. 

      ramplen:   number of samples for fade in and fade out (hanning ramp) 

                 of 'complete' object, i.e. the first ramplen samples of 

                 playback are ramped up and the last ramplen samples 

                 (including all loops) are ramped down. 

                 NOTE: ramplen must not exceed half of total play length: 

                       ramplen <= loopcount*length - startoffset 

    loopramplen: number of samples for fade in and fade out (hanning ramp) 

                 for each loop of object, i.e. the first ramplen samples of 

                 each loop are ramped up, and the last ramplen samples are 

                 ramped down. If a startoffset > 0 is specified then the very 

                 first played ramplen samples are ramped up as well. 

                 NOTE: if fileoffset and length are specified, then the ramps 

                 apply for the 'snippet' defined by these parameters! 

  loopcrossfade: if this value is set to 1 then a crossfade with a length of 

                 'loopramplen' samples is done on looping 

                 NOTE: this parameter is ignored if loopcount is 1 or 

                 loopramplen is 0 

                 IMPORTANT NOTE: this means that the length of each loop will 

                 be shorter by 'loopramplen' samples than total sizes file. 

Def.> track:     vector with all tracks 

      loopcount: 1 

      offset:    0 

    startoffset: 0 

     fileoffset: 0 

      length:    0 

      gain:      1 

   crossfadelen: 0 

      ramplen:   0 

    loopramplen: 0 

  loopcrossfade: 0 

cleardata Name> cleardata 

Help> clears all loaded audio data and resets positions to zero. 

      If device is running, command is only allowed, if 'start' was called 

      with 'length' set to 0. 

04e 

cleartrack Name> cleartrack 

Help> clears all loaded audio data on one or more tracks. 

      If device is running, command is only allowed, if 'start' was called 

      with 'length' set to 0. 

Par.> track:     vector with tracks (indices or cell array with names) to 

                 to be cleared 

Def.> track:     empty 

None 

trackload Name> trackload 

Help> retrieves the number of pending audio data 'buffers' (mem or file) for 

      all tracks. This command is intended for monitoring the current 'load' 

      of a track, especially if data are loaded 'on-the-fly' while the device 

      is running. If you load too many data segments (file or mem) you may 

      produce heavy memory load that may result in dropouts or even crashes. 

      So, this command can be used to adjust the 'speed' of loading new data 

      on-the-fly if necessary. 

Ret.> value:     vector/array with number of data segments that are currently 

                 pending for output on all tracks. 

04c 

tracklen Name> tracklen 

Help> returns vector/array with total length of all tracks, i.e. position of 

      last sample in each track. A value of -1 indicates, that an endless 

      loop is running on the particular track. 

04 



 

SoundMexPro documentation   54 

Ret.> value:     vector/array with lengths of all tracks 

wait Name> wait 

Help> waits for output on one or more track to be finished. NOTE: if a 

      track is specified, where an endless loop is running, an error is 

      returned! 

Par.> track:     vector with tracks (indices or cell array with names) to 

                  wait for (no duplicates allowed) 

      timeout:   timeout value. If a value > 0 is specified, the function 

                 returns with an error, if output was not finished within 

                 'value' milliseconds 

      mode:      'output' or 'stop'. If 'output' is set, the command waits 

                 until no more output data are pending for the corresponding 

                 track(s), i.e. it may return slightly before all data were 

                 really processed through soundcard. If 'stop' is set, then 

                 the command waits until the device is stopped automatically 

                 after playback is done (see parameters of command 'start') 

                 or if it is stopped by command 'stop' (e.g. from GUI). If 

                 'stop' is specified, then 'track' is neglected. 

Def.> track:     vector with all tracks 

      timeout:   0 (no timeout, i.e. endless waiting) 

      mode:      'output' 

04a 

playing Name> playing 

Help> returns play status of all tracks 

Ret.> value:     vector/array with zeros and ones denoting corresponding play, 

                 status i.e. 1 if a track currently is playing data, or 0 if 

                 not. NOTE: the return value does _not_ show, if the device 

                 is running. If a channel is running but playing zeroes 

                 because no data were loaded the return value for the track 

                 will be '0'. To check if the device is (still) running use 

                  the command 'started'. 

      NOTE: this command will return '0' immediately after the data are 

      passed to the driver completely. If you want to wait for the playback 

      to be finished in 'autostop-mode' (see parameter 'length' for command 

      'start' when setting values other than 0), then you should used the 

      command 'started' to wait for device to be stopped. 

04a 

playposition Name> playposition 

Help> Sets and returns current play position of device in samples (audible 

      samples). Setting the play position is only allowed, if parameter 

      'autocleardata' was set to 0 in command 'init', and if device is 

      paused with command 'pause'. 

      NOTE: since ASIO does blockwise audio processing, the returned 

      value always is a multiple of the current buffer size (not sample 

      accurate)! 

      IMPORTANT NOTE: if you use the playposition command to reset current 

      position in pause mode to position X, then the command will not (!) 

      return the position you have set, but a position Y that is smaller!! 

      When unpausing the device it will play (X-Y) samples of zeros before 

      the first requested sample at position X is audible. Use loadposition 

      to retrieve next audible sample in pause mode instead. 

      See also command 'loadposition'. 

Par.> position:  position in samples to set playback position to, 

Def.> position:  -1 (position not changed), 

Ret.> value:     current sample position of device 

04a 

loadposition Name> loadposition 

Help> returns current loading position of device in samples. This is the 

      number of samples loaded up to now (therefore higher than the value 

      of 'playposition'). It's value is 

        'playposition' + ASIO buffersize * numbufs ('numbufs' see 'init'). 

      NOTE: since ASIO does blockwise audio processing, the returned 

      value always is a multiple of the current buffer size (not sample 

      accurate)! 

Ret.> value:     current loading position of device 

04d 

volume Name> volume 

Help> sets volume and returns current volume of output channels 

Par.> value:     vector/array with volumes (linear gains). If no value is 

                 specified, no volume is changed, current volumes are 

04b 



 

SoundMexPro documentation   55 

                 returned. Either one volume must be specified (applied 

                 to all channels) or lengths of volume and channel vector/array 

                 must be identical (gains applied in corresponding order 

                 to specified channels). NOTE: this volume is the 'master' 

                 volume, i.e. it is applied after all signal processing 

                 and mixing as a linear factor to each sample 

      channel:   vector/array with output channels (indices or array with 

                 names) to apply volume to (no duplicates allowed) 

Def.> value:     current volumes (no changes) 

      channel:   vector/array with all allocated channels 

Ret.> value:     vector/array with current volumes for all allocated channels 

trackvolume Name> trackvolume 

Help> sets volume and returns current volume of tracks 

Par.> value:     vector/array with volumes (linear gains). If no value is 

                 specified, no volume is changed, current volumes are 

                 returned. Either one volume  must be specified (applied 

                 to all tracks) or lengths of volume and track vector/array 

                 must be identical (gains applied in corresponding order 

                 to specified tracks). 

      track:     vector/array with tracks (indices or array with names) to 

                 apply volume (no duplicates allowed) 

      ramplen:   ramplength in samples to use for fading from current 

                 volume to new volume. 

Def.> value:     current track volumes (no changes) 

      track:     vector/array with all tracks 

      ramplen:   0 

Ret.> value:     vector/array with current volumes for all tracks 

04b 

debugsave Name> debugsave 

Help> sets debugsave mode and returns current mode 

Par.> value:     vector/array with ones and zeroes. If no value is specified, 

                 no mode is changed, current modes are returned. Either 

                 one mode must be specified (applied to all channels) or 

                 lengths of mode vector/array and channel vector/array must be 

                 identical (modes applied in corresponding order to 

                 specified channels). 1 sets enables debug saving: a file 

                 named 'out_?.wav' is created where '?' is the channel 

                 number. The output data are saved to that file before 

                 sending them to soundcard. NOTE: 'volume' and any ramps 

                 or applied after saving!. 0 disables debug saving. 

                 NOTE: if you switch debugsaving off, then NO files will 

                 be saved in file2file mode as well! 

      channel:   vector/array with channels (indices or array with names) to 

                 apply mode (no duplicates allowed) 

Def.> value:     current modes (no changes) 

      channel:   vector/array with all allocated channels 

Ret.> value:     vector/array with current debug modes for all allocated 

                 channels 

04c 

debugfilename Name> debugfilename 

Help> sets one or more debug filenames for one or more channels and 

      returns current name(s). NOTE: value can only be set if device is 

      stopped! If an invalid filename is passed, or a filename that is 

      already used by another channel you may get errors on 'start'! 

      Default names are 'out_?.wav' where ? is the channel number. 

      NOTE: debug files are always overwritten! 

      NOTE: debug files are always stored as normalized 32-bit float 

      PCM wave files. 

      NOTE: never write files directly to network drives or other slow 

      drives! This may cause dropouts (xruns)! 

Par.> filename:  array with one or more filenames for debug-data. 

                 The number of filenames must be identical to the number 

                 of channels specified in 'channel' 

      channel:   vector/array with channels (indices or array with names), 

                 were filenames to be set 

Def.> channel:   vector/array with all allocated output channels 

Ret.> value:     array with current record file names for all allocated 

                 output channels 

 



 

SoundMexPro documentation   56 

f2ffilename Name> f2ffilename 

Help> sets one or more file2file-filenames for one or more channels and 

      returns current name(s). NOTE: value can only be set if device is 

      stopped! If an invalid filename is passed, or a filename that is 

      already used by another channel you may get errors on 'start'! 

      Default names are 'f2f_?.wav' where ? is the channel number. 

      NOTE: file2file-files are always overwritten! 

      NOTE: file2file-files are always stored as normalized 32-bit float 

      PCM wave files. 

Par.> filename:  array with one or more filenames for file2file-data. 

                 The number of filenames must be identical to the number 

                 of channels specified in 'channel' 

      channel:   vector/array with channels (indices or array with names), 

                 were filenames to be set 

Def.> channel:   vector/array with all allocated output channels 

Ret.> value:     array with current record file names for all allocated 

                 output channels 

11 

 
 

13.4 Recording Commands 
This table contains commands related to audio recording 
IMPORTANT NOTE: record files are always overwritten! Use the 'recfilename' command to change the 
filenames if necessary. 
NOTE: recorded data are always stored in normalized 32-bit float PCM wave files. 

Command Description Tut. 
start applies to playback and recording, help see Playback commands  

started applies to playback and recording, help see Playback commands  

stop applies to playback and recording, help see Playback commands  

pause applies to playback and recording, help see Playback commands  

recording Name> recording 

Help> returns record status of all allocated input channels 

Ret.> value:     vector/array with zeros and ones denoting corresponding 

                 record status, i.e. 1 if channel is currently recording 

                 data, or 0 if not. NOTE: all allocated channels do always 

                 record data from the soundcard, but 'recording' determines 

                 if the data are currently saved to disk 

05a 

recfilename Name> recfilename 

Help> sets one or more record filenames for one or more channels and 

      returns current name(s). NOTE: value can only be set if device is 

      stopped! 

      NOTE: you cannot use the same filename for different channels, only 

      one mono file per channel can be written! 

      If an invalid filename is passed, or a filename that is 

      already used by another channel you may get errors on 'start'! 

      You can set/change the filename of a channel either if device is 

      stopped, or if the corresponding input channel(s) are paused with 

      command 'recpause'. If you set a record filename for a paused input 

      channel, the current record file (filename before setting the new 

      one) is closed and the new one created. If a record length was set 

      with command 'reclength' the new file again will only record the 

      specified number of samples. 

      NOTE: record files are always overwritten, i.e. if the same name 

      is specified 'again' in pause mode the file is overwritten directly! 

      NOTE: recorded data are always stored in normalized 32-bit float 

      PCM wave files. 

      NOTE: never store record files directly on network drives or other 

      slow drives! This may cause dropouts (xruns)! 

      To disable recording to file for one or more channels use the command 

      'recpause'. 

Par.> filename:  array with one or more filenames for recording data. 

05a 



 

SoundMexPro documentation   57 

                 The number of filenames must be identical to the number 

                 of channels specified in 'channel' 

      channel:   vector/array with channels (indices or array with names), 

                 were filenames to be set 

Def.> channel:   vector/array with all allocated input channels 

Ret.> value:     array with current record file names for all allocated 

                 input channels 

recpause Name> recpause 

Help> sets recording pause status of one or more channels and returns 

      current recording pause status. NOTE: this only pauses recording to 

      file, recording to buffer (for retrieving record data with command 

      'recgetdata') is always enabled. So this command may be used also to 

       disable recording to file completely. 

      NOTE: setting recpause to 1 does not close the recording file, it only 

      disables writing to it (temporarily). If you want to read the file in 

      pause mode you have to change the current recfilename in recpause mode 

      with command 'recfilename': this will close the file(s)! 

Par.> value:     vector/array with 1 (pauses record of channel) or 0 (resumes 

                 recording) 

      channel:   vector/array with channels (indices or array with names), 

                 were values to apply to 

 closerecfile:   if set to 1 the recording file is closed if recording is 

                 paused. On resuming a new file is created (existing data 

                 are overwritten), 

Def.> value:     current values (no change) 

      channel:   vector/array with all allocated input channels 

 closerecfile:   0 

Ret.> value:     vector/array with current recording pause status for all 

                 allocated input channels 

05a 

recposition Name> recposition 

Help> returns record position of all allocated output channels 

Ret.> value:     vector/array with number of samples recorded on each 

                 allocated input channel. NOTE: all allocated channels 

                 do always record data from the soundcard, so the absolute 

                 recording position is determined by 'playposition'. This 

                 command returns how many samples are saved to disk for each 

                 channel. During recording saving might be enabled and 

                 disabled multiple times, 'recposition' returns the total 

                 number of saved samples 

05a 

recthreshold Name> recthreshold 

Help> sets record threshold and returns current value 

Par.> value:     Thresholds  between 0 and 1, current value is returned. 

                 If no value is specified the current value is not changed. 

                 A value of 0 disables the threshold. Otherwise recording 

                 to file (!) starts with the first recorded buffer (not 

                 sample!) that contains data that exceed the threshold 

                 value with respect to the specified mode and channels. 

                 NOTE: threshold is resetted after exceeding it (set to 0)! 

      mode:      Flag, if the threshold must be exceeded in one (1) or 

                 all (0) of the channels specified in 'channel'. Must 

                 be 0 or 1. 

      channel:   vector/array with channels (indices or array with names) to 

                 check for the threshold (no duplicates allowed) 

Def.> value:     current thresholds (no changes, 0 on startup) 

      mode:      1 

      channel:   vector/array with all allocated channels 

Ret.> value:     current threshold value 

      mode:      current threshold mode 

05b 

recstarted Name> recstarted 

Help> returns, if recording to file (!) channels was ever started. This 

      command is especially useful when recording with threshold to check, 

      if the threshold value was ever exceeded (e.g. for implementing 

      timeouts). 

Ret.> value:     vector/array with ones (started) and zeros (not started) 

                 for all allocated input channels 

05b 

reclength Name> reclength 05b 



 

SoundMexPro documentation   58 

Help> sets file record length and returns current values 

Par.> value:     vector/array with record lengths. If no value is specified, no 

                 value is changed, current values are returned. Either one 

                 value must be specified (applied to all channels) or 

                 lengths of value vector/array and channel vector/array must 

                 be identical (record length applied in corresponding order 

                 to specified channels). Recording to file on the  

                 corresponding channel is stopped after recording the 

                 specified number of samples (0 does endless recording). 

                 NOTE: this record length sets the length of the file (!) 

                 to be reorded only! If the recorded file exceeds this 

                 length only recording to file is deisabled, the device 

                 itself is _not_ stopped: playback and recording (to 

                 memory) is still ongoing! 

      channel:   vector/array with channels (indices or array with names) to 

                 apply record lengths to (no duplicates allowed) 

Def.> value:     current record lengths (no changes, 0 on startup) 

      channel:   vector/array with all allocated channels 

Ret.> value:     vector/array with current file record lengths for all 

                 allocated channels 

recbufsize Name> recbufsize 

Help> sets record buffer sizes and returns current values 

Par.> value:     vector/array with buffer sizes. If no value is specified, no 

                 value is changed, current values are returned. This value 

                 specifies, how many recorded samples of a channel are 

                 buffered in memory and can be retrieved with command 

                 'recgetdata'. NOTE: values smaller than the current 

                 buffersize of the device are adjusted to that buffersize 

                 (except 0 which disables buffering). Either one value 

                 must be specified (applied to all channels) or lengths 

                 of value vector/array and channel vector/array must be 

                 identical (buffer size applied in corresponding order to 

                 specified channels). 

                 NOTE: the requested buffer size has to be allocated from 

                 memory for each recording channel. So take care that not 

                 more memory is requested than available. In general more 

                 than a few minutes should not be set as buffer size! 

      channel:   vector/array with channels (indices or array with names) to 

                 apply buffer sizes to (no duplicates allowed) 

Def.> value:     current record buffer sizes (no changes, 0 on startup) 

      channel:   vector/array with all allocated channels 

Ret.> value:     vector/array with record buffer size for all allocated 

                 input channels 

05c 

recgetdata Name> recgetdata 

Help> returns record data 

Par.> channel:   vector/array with channels (indices or array with names) 

                 to retrieve data from (no duplicates allowed) NOTE: data 

                 from multiple channels with different recbufsizes (set with 

                 'recbufsize') cannot be retrieved with a single command and 

                 must be retrieved subsequently 

Def.> channel:   vector/array with all allocated channels 

Ret.> data:      matrix/array with columns containing record data from 

                 channels (length is set by 'recbufsize' command), 

                 absolute record sample position of first sample in returned 

                 matrix. 

                 IMPORTANT NOTE: this returned record sample position is the 

                 absolute position in time (i.e. recorded samples since the 

                 device is running). It will be identical to the position if 

                 recording to file. On each call the number of samples is 

                 returned that was specified in command 'recbufsize'. 

                 Therefore if 'recgetdata' is called before this number of 

                 samples is recorded at all, zeroes are prepended and the 

                 returned position will be negative. In subsequent calls to 

                 'recgetdata' you may retrieve overlapping data (if you are 

                 calling fast!), and thus the number of 'new' samples n 

                 (i.e. samples, that were not already retrieved in last call) 

05c 



 

SoundMexPro documentation   59 

                 can be calculated by the difference of the two retrieved 

                 positions p1 and p2: 

                    n = (p2 - p1). 

                 If this number is larger than your recbufsize, than you 

                 have missed data! Otherwise you can copy the new data with 

                 respect to the overlap: the last (recbufsize - n) samples 

                 in the first buffer are identical to the first (recbufsize - n) 

                 samples in the second buffer and you may skip them. 

recmute Name> recmute 

Help> sets mute status of one or more input channels and returns current 

      status. NOTE: mute/unmute is not ramped! 

      NOTE: 'solo' status supersedes 'mute' status: if solo status of any 

      input is '1', then mute status of all inputs is ignored! 

Par.> value:     vector/array with mute values (0 for unmute or 1 for mute). 

                 If no value is specified, no mute values are changed, 

                 current values are returned. Either one value must be 

                 specified (applied to all channels) or lengths of mute 

                 and input vector/array must be identical (values applied in 

                 corresponding order to specified channels). 

      input:     vector/array with input channels (indices or array with 

                 names) to apply values (no duplicates allowed) 

Def.> value:     current mute values (no changes) 

      input:     vector/array with all input channels 

Ret.> value:     vector/array with current mute values for all input channels 

none 

recsolo Name> recsolo 

Help> sets solo status of one or more input channels and returns current 

      status. NOTE: muting/unmuting is not ramped! 

      NOTE: 'solo' status supersedes 'mute' status: if solo status of any 

      input is '1', then mute status of all inputs is ignored! 

Par.> value:     vector/array with solo values (0 for unsolo or 1 for solo). 

                 If no value is specified, no solo values are changed, 

                 current values are returned. Either one value must be 

                 specified (applied to all channels) or lengths of solo 

                 and input vector/array must be identical (values applied in 

                 corresponding order to specified channels). 

      input:     vector/array with input channels (indices or array with  

                 names) to apply values (no duplicates allowed) 

Def.> value:     current solo values (no changes) 

      input:     vector/array with all input channels 

Ret.> value:     vector/array with current solo values for all input channels 

none 

recvolume Name> recvolume 

Help> sets recording volume and returns current recording volume of input 

      channels. 

Par.> value:     vector/array with volumes (linear gains). If no value is 

                 specified, no volume is changed, current volumes are 

                 returned. Either one volume must be specified (applied 

                 to all channels) or lengths of volume and channel vector/array 

                 must be identical (gains applied in corresponding order 

                 to specified channels). NOTE: this volume is the 'master' 

                 volume, i.e. it is applied before all signal processing 

                 and mixing as a linear factor to each sample 

                 IMPORTANT NOTES: this volume is applied to each recorded 

                 sample BEFORE any signal processing, mixing aor threshold 

                 determination is done (see also command 'recthreshold'). 

                 Clipping is checked BEFORE applying the volume. This gain 

                 is NOT ramped. 

      channel:   vector/array with input channels (indices or array with) 

                 names to apply volume to (no duplicates allowed) 

Def.> value:     current volumes (no changes) 

      channel:   vector/array with all allocated channels 

Ret.> value:     vector/array with current volumes for all allocated channels 

none 

 
 



 

SoundMexPro documentation   60 

13.5 MATLAB® script DSP commands 
This table contains commands related to communication with MATLAB® DSP plugins. N 

Command Description Tut. 
pluginsetdata Name> pluginsetdata 

Help> sets current plugin user data 

      NOTE: this command is not supported in Python 

Par.> data:      matrix with user data (mandatory). A matrix with the n 

                 columns and 100 rows must be specified, where n is the 

                 number of allocated input or output channels respectively. 

      mode:      'input' or 'output' to set input or output user data 

Def.> mode:      'output' 

07a 

plugingetdata Name> plugingetdata 

Help> retrieves current plugin user data 

      NOTE: this command is not supported in Python 

Par.> mode:      'input' or 'output' to retrieve input or output user data 

Def.> mode:      'output' 

Ret.> data:      matrix with current plugin user data for all allocated 

                 channels 

07a 

 
 

13.5.1 VST Commands 
This table contains commands related to VST plugins. NOTE: all these commands are only available with a 
VST license! 

Command Description Tut. 
vstquery Name> vstquery 

Help> returns information on a VST plugin by filenname or by type, 

      input and position 

Par.> filename:  filename of plugin to query. NOTE: if filename is 

                 specified, all other parameters are ignored! 

      type:      type of plugin to query. Allowed types are: 

                 master:  plugin loaded as master plugin, 

                 final:   plugin loaded as final plugin, 

                 track:   plugin loaded as track plugin, 

                 input:   plugin loaded as input/recording plugin, 

      input:     one of the plugins input channels specified when 

                 loading it with 'vstload', 

      position:  'vertical' position of plugin to unload. 

Def.> type:      'master' 

      position:  0 

Ret.> info:      array with effect name, product string and vendor as, 

                 returned from plugin 

      input:     number of available inputs, 

      output:    number of available outputs, 

      programs:  array with available program names, 

      program:   name of current program, 

      parameter: array with available parameter names, 

      value:     vector/array with corresponding parameter values 

09b 

vstload Name> vstload 

Help> loads a VST plugin (optionally with config file). 

Par.> filename:  filename of plugin to load 

      type:      type of plugin to load. Allowed types are: 

                 master:  plugin is loaded as 'master plugin': it is 

                          plugged into 'hardware output channels', i.e. 

                          applied on track sums (after mixing) BEFORE the, 

                          script plugin 

                 final:   plugin is loaded as 'master plugin': it is 

                          plugged into 'hardware output channels', i.e. 

                          applied on track sums (after mixing) AFTER the, 

09a 

09d 



 

SoundMexPro documentation   61 

                          script plugin 

                 track:   plugin is loaded as 'track plugin': it is 

                          plugged into virtual tracks, 

                 input:   plugin is loaded as 'recording plugin': it is 

                          plugged into input channels, 

      input:     vector/array with input channels: hardware channels or tracks 

                 (plugin must support number of inputs). A value of -1 

                 configures a plugin input to be used as recurse input (see 

                 parameters 'recursechannel' and 'recursepos' below) 

      output:    vector/array with output channels: hardware channels or 

                 tracks (plugin must support number of outputs). 

                 If empty 'input' vector/array is used (input = output), 

      position:  'vertical' position. Each channel may contain five 

                 'vertical' plugins that are called subsequently. 

      recursechannel: An input of a plugin can be configured to receive so  

                 called 'recurse data' data rather than 'regular' input 

                 audio data from a channel or a track. This feature is 

                 intended for recursion e.g. for adaptive filter plugins 

                 that need 'a plugin output as an input'. To configure a 

                 plugins input for this purpose a value of '-1' must be 

                 specified for that plugin input in the parameter vector/array 

                 'input' (see above). The parameter vectors 'recursechannel' 

                 and 'recursepos' configure the 'source' for this plugin 

                 input by specifying the 'channel' (track or output channel, 

                 depending on plugin type) and the vertical position (see 

                 parameter 'position'), where the data are copied from. For 

                 a detailed example see the manual of SoundMexPro. 

                 NOTE: if the position of the source ('recursepos') is the 

                 same or higher than this plugin's position, then the source 

                 is 'behind' the input. Thus the data that will be received 

                 on this plugin's input will be the last block, i.e. the 

                 data are prom the past (one ASIO buffersize from the past)! 

                 NOTE: the number of values must be identical to the number 

                 of '-1' values passed to 'input'! 

     recursepos: vector/array specifying one or more 'positions' for recurse 

                 input configuration (see 'recursechannel'). If a value of '-1' 

                 is specified, this plugin's position is used (i.e. a direct 

                 recursion from the output of the plugin to one of it's 

                 inputs) 

                 NOTE: the number of values must be identical to the number 

                 of '-1' values passed to 'input'! 

      program:   program name to set. 

      programname: new name to set for current program. This name is set 

                 after 'program' was selected. 

     configfile: optional filename of config file to use (description of 

                 format see manual). NOTE: other parameters passed to 

                 command supersede corresponding entries in config file! 

Def.> type:      'master' 

      output:    input 

      position:  0 

      recursechannel: empty vector/array 

      recursepos: empty vector/array 

Ret.> type:      type of plugin (master, final, track or record), 

      input:     row vector/array with input channels, 

      output:    row vector/array with output channels, 

      position:  'vertical' position 

vstunload Name> vstunload 

Help> unloads VST plugin. 

Par.> type:      type of plugin to unload. Allowed types are: 

                 master:  plugin is unloaded from master plugins, 

                 final:   plugin is unloaded from final plugins, 

                 track:   plugin is unloaded from track plugins, 

                 input:   plugin is unloaded from input plugins, 

      input:     one of the plugins input channels specified when 

                 loading it with 'vstload', 

                 NOTE: plugin is unloaded 'completely', it's removed 

09b 



 

SoundMexPro documentation   62 

                 from all channels, where it was loaded to! 

      position:  'vertical' position of plugin to unload. 

Def.> type:      'master' 

      position:  0 

vstprogram Name> vstprogram 

Help> sets and retrieves a program of a VST plugin. 

Par.> type:      type of plugin to query. Allowed types are: 

                 master:  master plugin is queried, 

                 final:   final plugin is queried, 

                 track:   track plugin is queried, 

                 input:   input plugin is queried, 

      input:     one of the plugins input channels specified when 

                 loading it with 'vstload'. 

      position:  'vertical' position of plugin to query. 

      program:   name of program to select. If empty, value is not changed. 

Def.> type:      'master' 

      position:  0 

Ret.> program:   current program name. 

09b 

vstprogramname Name> vstprogramname 

Help> sets and retrieves the name of the current program of a VST plugin. 

      NOTE: this command does not select a new program by name, it renames 

      the current program! 

      NOTE: the plugin itself has to support this renaming, otherwise the 

      command will fail. 

Par.> type:      type of plugin to query. Allowed types are: 

                 master:  master plugin is queried, 

                 final:   final plugin is queried, 

                 track:   track plugin is queried, 

                 input:   input plugin is queried, 

      input:     one of the plugins input channels specified when 

                 loading it with 'vstload'. 

      position:  'vertical' position of plugin to query. 

      programname: new name to set for current program. If empty, value is 

                 is not changed. 

Def.> type:      'master' 

      position:  0 

Ret.> program:   name of current program. 

09b 

vstparam Name> vstparam 

Help> sets and retrieves one or more parameter values of a VST plugin 

Par.> type:      type of plugin to query. Allowed types are: 

                 master:  master plugin is queried, 

                 final:   final plugin is queried, 

                 track:   track plugin is queried, 

                 input:   input plugin is queried, 

      input:     one of the plugins input channels specified when 

                 loading it with 'vstload', 

      position:  'vertical' position of plugin to query. 

      parameter: parameter name(s) to set (array). If empty all 

                 parameters are queried/set. 

      value:     vector/array with values for parameters. All values must be 

                 between 0.0 and 1.0. If empty, values are not changed 

                 otherwise length must be identical to length of parameter 

                 array. 

Def.> type:      'master' 

      position:  0 

Ret.> parameter: array with queried parameter names, 

      value:     current values of queried parameters 

09a 

vstset Name> vstset 

Help> sets and retrieves program and/or parameters of VST plugin by 

      values in a config file 

Par.> type:      type of plugin to query. Allowed types are: 

                 master:  master plugin is queried, 

                 final:   final plugin is queried, 

                 track:   track plugin is queried, 

                 input:   input plugin is queried, 

      input:     one of the plugins input channels specified when 

09b 



 

SoundMexPro documentation   63 

                 loading it with 'vstload', 

      position:  'vertical' position of plugin to query. 

     configfile: filename of config file to use (description of format 

                 see manual). NOTE: other parameters passed to command 

                 supersede corresponding entries in config file! 

Def.> type:      'master' 

      position:  0 

Ret.> program:   current program 

      parameter: array with all (!) available parameter names 

      value:     vector/array with corresponding parameter values 

vststore Name> vststore 

Help> stores current configuration of a VST plugin in a config file 

     (description of format see manual) 

Par.> type:      type of plugin to query. Allowed types are: 

                 master:  master plugin is queried, 

                 final:   final plugin is queried, 

                 track:   track plugin is queried, 

                 input:   input plugin is queried, 

      input:     one of the plugins input channels specified when 

                 loading it with 'vstload', 

      position:  'vertical' position of plugin to query. 

     configfile: filename of config file to write to. NOTE: and existing 

                 file will be overwritten! 

Def.> type:      'master' 

      position:  0 

09b 

vstedit Name> vstedit 

Help> shows a GUI parameter editor of a VST plugin. 

Par.> type:      type of plugin to query. Allowed types are: 

                 master:  master plugin is queried, 

                 final:   final plugin is queried, 

                 track:   track plugin is queried, 

                 input:   input plugin is queried, 

      input:     one of the plugins input channels specified when 

                 loading it with 'vstload', 

      position:  'vertical' position of plugin to query. 

Def.> type:      'master' 

      position:  0 

09b 

13.6 MIDI Commands 
This table contains commands related to MIDI.  

Command Description Tut. 
midiinit Name> midiinit 

Help> initializes a MIDI device. 

Par.> driver:    name or index of MIDI driver to use 

Def.> driver:    0 

Ret.> driver:    name of used MIDI driver 

see example 
directory 30 MIDI 

midiexit Name> midiexit 

Help> exits MIDI device. 

see example 
directory 30 MIDI 

midigetdrivers Name> midigetdrivers 

Help> returns all available MIDI drivers 

Ret.> driver:    vector/array with MIDI driver names 

see example 
directory 30 MIDI 

midishortmsg Name> midishortmsg 

Help> sends a message to MIDI device using API midiOutShortMsg. See 

      MIDI documentations for more information. All paramaters are  

      mandatory, all value must be between 0 and 255. 

Par.> status: status byte to send, 

      midi1:  first data byte to send, 

      midi2:  second data byte to send 

see example 
directory 30 MIDI 

midiplaynote Name> midiplaynote 

Help> plays a note on MIDI device. Note is switched 'on' and 'off' 

      immediately afterwards again. 

Par.> note:   note to play between 0 and 127, where 0 is C-1 and 127 

              is G9 (example: 440 Hz (A4) is 69), 

see example 
directory 30 MIDI 



 

SoundMexPro documentation   64 

      volume: volume (velocity) to use (between 0 and 127) 

      channel: MIDI channel to use (between 0 and 15) 

Def.> note:   mandatory 

      volume: 127 

      channel: 0 

 

13.7 Other Commands 
This table contains commands related to direct I/O and other special commands 

Command Description Tut. 
iostatus Name> iostatus 

Help> sets I/O status of an input channel and returns current status 

Par.> input:     vector/array with input channels (indices or array with 

                 names) to map. This value is mandatory. If one channel is 

                 specified, then this input is mapped to all specified 

                 tracks. If more than one channel is specified then the 

                 number of tracks must be identical and the input channels 

                 are mapped to one track each in the specified order. 

      track:     vector/array with tracks (indices or array with names) 

                 for mapping (no duplicates allowed). The samples of the 

                 specified input channel are added to all specified tracks. 

                 Passing '-1' clears mapping for specified input channel. 

Def.> input:     if track is -1, then default is all available input channels 

Ret.> track:     vector/array containing tracks, where the samples from the 

                 input channel are added to. NOTE: this value is only 

                 returned, if one input channel is specified! 

06 

setbutton Name> setbutton 

Help> enables button marking synchronized with playback. NOTE: after 

      marking and unmarking a particular button, the marking information 

      is resetted. To use the same marking information again you have to 

      call 'setbutton' again!! 

      NOTE: The MATLAB window containing the buttons must have a non-empty! 

            title (otherwise you will get an error 'value for field 'name' 

            is empty')!! 

      NOTE: only use this command from MATLAB (not with SoundDllLoader)! 

      NOTE: this command is not supported in Python 

Par.> handle:    (window) handle of the button 

      startpos:  starting point in samples 

      length:    marking length in samples 

      channel:   output channel with mix data to calculate samples 

Def.> channel:   0 

04d 

dspload Name> dspload 

Help> returns current and maximum dsp load that occurred. The dsp load is 

      the time consumed within a block for signal processing compared to 

      total available computing time for a block in percent. 

Ret.> value:     current dsp load, 

      maxvalue:  maximum dsp load since startup or last call to 'dsploadreset' 

07a 

dsploadreset Name> dsploadreset 

Help> resets the dsp load maximum value (see command 'dspload'). 

07a 

adm Name> adm 

Help> interface to 'ASIO Direct Monitoring' for direct I/O wiring. 

      NOTE: successful call to command does not guarantee that command was 

      successfully done in driver. Drivers may ignore commands and/or 

      parameters that are not supported and return 'success' anyway! 

      Please see also the extra ADM chapter in the SoundMexPro manual! 

Par.> input:     input channel to monitor. -1 monitors all inputs (not 

                 supported by all drivers) 

      output:    output channel fpr monitoring the input. 'Snippet' from 

                 original ASIO help: 'Output is the base channel of a stereo 

                 channel pair, i.e. output is always an even channel (0,2...). 

                 If an odd input channel should be monitored and no panning 

                 or output routing can be applied, the driver has to use the 

                 next higher output (imply a hard right pan).' 

10 



 

SoundMexPro documentation   65 

      gain:      gain to set ranging from 0 (-inf) to 2147483647 (12 dB, hex 

                 0x7fffffff), where 536870912 (hex 0x20000000) is 0 dB. 

                 NOTE: the 'gain' values may not be distibuted linearly 

                 neither on a dB nor on alinear loudness scale (depends on 

                 soundcard/driver) 

      pan:       pan to set, where 0 is 'left' and 2147483647 (hex 0x7fffffff) 

                 is right. NOTE: panning may be implemented different and 

                 may depend on 'output' (if odd or even channel used, see 

                 see above). Please check out behaviuor of your device! 

      mode:      flag, what to set. 0 switches monitoring off, 1 switches 

                 monitoring on. NOTE: no other modes are part of the original 

                 ASIO interface. But some soundcard manufacturers support 

                 more undocumented modes (you may simply try it). The RME 

                 FireFace for example supports modes 2 and 3. Using these 

                 values, 'input' is ignored and the gain and pan of output 

                 channel 'output' are set instead of input channel 'input', 

                 where mode 2 switches 'off' (muted, i.e. gain 0), and 

                 mode 3 switches 'on', i.e. gain 'gain' is really set. 

Def.> input:     0 

      output:    0 

      gain:      536870912 (hex 0x20000000, i.e. 0 dB) 

      pan:       1073741823 (hex 0x7fffffff/2, i.e. middle position) 

      mode:      1 

 

13.8 Error Handling 
This table contains commands related to error detecting and handling. Please read the separate chapter on 
error handling carefully! 

Command Description Tut. 
asyncerror Name> asyncerror 

Help> returns asynchroneous error status and error text 

Ret.> value:     1 if an asynchroneous error ocurred or 0 else, 

      error:     error text (if any) 

08 

resetasyncerror Name> resetasyncerror 

Help> resets asynchroneous error 

08 

clipthreshold Name> clipthreshold 

Help> sets clipping threshold and returns current threshold values. The 

      clipping threshold is the normalized value (between 0 and 1) that 

      will be interpreted as clipping and thus will increase the clipcount 

      if exceeded. Default on startup is 1 for all channels (real digital 

      overdrive). 

Par.> type:      'input' or 'output' to set input (recording) threshold 

                 value(s) or output (playback) threshold value(s) 

      value:     vector/array with thresholds between 0 and 1. If no value is 

                 specified, no threshold is changed, current thresholds are 

                 returned. Either one threshold must be specified (applied 

                 to all channels) or lengths of threshold and channel vector 

                 must be identical (thresholds applied in corresponding order 

                 to specified channels). 

      channel:   vector/array with output channels (indices or array with 

                 names) to apply threshold to (no duplicates allowed) 

Def.> type:      'output' 

      value:     current threshold values (no changes) 

      channel:   vector/array with all allocated channels 

Ret.> value:     vector/array with current thresholds for all input or 

                 output channels 

- 

clipcount Name> clipcount 

Help> returns number of buffers (not samples!) where clipping occurred. 

      NOTE: for recording 'clipping' is defined as two consecutive full 

      scale samples. For the input channels clipping is checked before 

      any gain and signal processing (plugins) is applied to detect clipping 

      that occurred on D/A-conversion. If you use any plugins that amplify 

04b 

05a 



 

SoundMexPro documentation   66 

      the input, such clipping is _not_ detected by 'clipcount' command! 

Ret.> outut:  vector/array with number of buffers where clipping occurred 

              for each allocated ouptut channel, 

      input:  vector/array with number of buffers where clipping occurred 

              for each allocated input channel, 

      track:  vector/array with number of buffers where clipping occurred 

              for each allocated track 

resetclipcount Name> resetclipcount 

Help> resets all clip counters to zero 

04b 

underrun Name> underrun 

Help> returns underrun status of all tracks. 1 means that during playback 

      the corresponding track ran out of data. 

Ret.> value:  vector/array with zeros and ones denoting corresponding 

              underrun status, i.e. 1 if an underrun occurred on the track, 

              or 0 if not 

04c 

xrun Name> xrun 

Help> returns number of xruns occurred since last start 

Ret.> value:     total number of xruns occurred since last start, 

      xrunproc:  number of processing xruns occurred since last start, 

      xrundone:  number of xruns in visualization and recording to disk 

                 since last start. 

07 

showerror Name> showerror 

Help> sets error handling/printing behavior of SoundMexPro and returns 

      current value 

      NOTE: this command is not supported in Python 

Par.> mode:   0: no errors are printed to MATLAB workspace 

              1: all errors are printed as warning to MATLAB workspace 

              2: MATLAB command 'error' is called with current errore 

Ret.> mode:   current value 

03 

getlasterror Name> getlasterror 

Help> returns last error 

Ret.> error:  last error as string 

03 

 

14 FAQ 
Please refer to the file FAQ on the SoundMexPro homepage (http://www.soundmexpro.de). 
 

15 Version History 
Please refer to the file HISTORY.TXT in the installation directory of SoundMexPro or to the 
SoundMexPro homepage (http://www.soundmexpro.de). 
 


